Synthesizing high-density U₃O₈ powder from UO₂F₂ solution via AUC precipitation

Nguyen Trong Hung1, Nguyen Thanh Thuy1
1 Institute for Technology of Radioactive and Rare Elements

Main Article Content

Abstract

Uranium trioxide octaoxide compound - U3O8 is a crucial nuclear material in nuclear technology. It is used as nuclear fuel for research reactors. To achieve this goal, an important characteristic that U3O8 powder must possess is a density ranging from 88-98% of the theoretical density (TD). This paper reports the results of an investigation of the ammonium uranyl carbonate (AUC) precipitation from uranyl fluoride (UO2F2) solution and optimization of sintering parameters for synthesizing high-density U3O8 powder, meeting the specified standards for manufacturing dispersed nuclear fuel for research reactors. The AUC precipitation was conducted using uranyl fluoride (UO2F2) solutions with uranium concentrations ranging from 80 to 120 gL-1 and ammonium carbonate ((NH4)2CO3) concentrations as precipitant were maintained between 200 and 400 gL-1, while the (NH4)2CO3 to U (C/U) molar ratios were kept equal to or greater than 6. The investigated parameters for sintering of the high-density U3O8 nuclear material derived from AUC (ex-AUC U3O8) are the sintering temperature and time. The experimental studies are designed by using the Response Surface Methodology (RSM) based on a Central Composite Design (CCD). As a result, a regression equation describing the dependency of U3O8 powder density on sintering temperature and time has been established. Based on this equation, the sintering for synthesizing high-density U3O8 powder has been optimized. The regression equation aids in controlling the parameters of the U3O8 powder sintering.

Article Details

References

[1]. IAEA-TECDOC 1374. Development status of metallic, dispersion and non-oxide advanced and alternative fuels for power and research reactors.
[2]. M. R. FINLAY and M. I. RIPLEY. A New Fuel for Research Reactors. https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/034/33034319.pdf.
[3]. R.G. Muranaka. Conversion of research reactors to low-enrichment uranium fuels. IAEA BULLETIN, VOL.25, No.1. https://www.iaea.org/sites/default/files/25105381821.pdf.
[4]. Copeland, G. And Martin, M. Development of High - Uranium Loaded U3O8 - Al Fuel Plates. Nuclear Technology. 1982, Vol. 56.
[5]. Nazaré, S. New Low Enrichment Dispersion Fuels for Research Reactors Prepared by PM-Techniques. J. Nucl. Mat. 1984 (124) p. 14.
[6]. R. W. Knight et al (1968). Fabrication procedures for manufacturing high flux isotope reactor fuel elements. U.S. ATOMIC ENERGY COMMISSION
[7]. G. M. Adamson (1969). Fabrication procedures for the initial high flux isotope reactor fuel elements. U.S. ATOMIC ENERGY COMMISSION
[8]. A. M. Saliba-Silva et al. Research Reactor Fuel Fabrication to Produce Radioisotopes. Chapter, October 2011.
[9]. W. J. Werner and J. E. Barkman (1967). Characterization and production of U3O8 for the high flux isotope reactor. U.S. ATOMIC ENERGY COMLCSSION.
[10]. G. L. Copeland and M. M. Martin (1960). Fabrication of high-uranium-loaded U3O8 developmental fuel plates. Oak Ridge National Laboratory.
[11]. R. W. Knight, J. Binns, and G. M. Adamson, Jr. (1968). fabrication procedures for manufacturing high flux isotope reactor fuel elements. U.S. ATOMIC ENERGY COMLCSSION.
[12]. Nguyen Trong Hung (2007). Vietnam’s yellow cake refining achieving nuclear purity through the TBP solvent extraction. Doctoral thesis, VINATOM.
[13]. Le Ba Thuan, Nguyen Trong Hung, et al. (2000). Research on Vietnam’s yellow cake refining achieving certain nuclear purity criteria, using the TBP solvent extraction. Final report on Ministry project (code CB-98/05), VINATOM.
[14]. Eung Ho Kim, Cheong Song Choi, Jin Ho Park, Seon Gil Kwon, In Soon Chang (1994). A study on morphology and chemical composition of precipitates produced from UO2(NO3)2-(NH4)2CO3 solution, Journal of Nuclear Materials, 209(3), 301-305.
[15]. A Boualia, A Mellah (1989). Précipitation de l'AUC par NH3 et CO2 à partir des solutions de nitrate d'uranyle. Precipitation of AUC by NH3 and CO2 from an uranyl nitrate solution. Hydrometallurgy 21(3), 331-344.
[16]. Rofail N.H. (1994). Infrared and X-ray diffraction spectra of ammonium uranyl Carbonate. Materials Chemistry and Physics, 36, 241-245.
[17]. Graziani R., Bombieri G. and Forsellini E. (1972). Crystal Structure of Tetra-mmonium Uranyl Tricarbonate. Journal of the Chemical Society, Dalton Transactions 19, 2059-2061.
[18]. Tae-Joon Kim, Kyung-Chai Jeong, Jin-Ho Park, In-Soon Chang, Cheong-Song Choi (1994). Crystallization characteristics of ammonium uranyl carbonate (AUC) in ammonium carbonate solutions. Journal of Nuclear Materials, 209, 306-314.
[19]. H. Tel, M. Eral (1996). Investigation of production conditions and powder properties of AUC. Journal of Nuclear Materials, 231, 165.
[20]. A. Marajofsky, L. Perez, J. Celora (1991). On the dependence of characteristics of powders on the AUC process parameters. Journal of Nuclear Materials, 178, 143-151.
[21]. C. S. Choi, J. H. Park, E. H. Kim, H. S. Shin, I. S. Chang (1988). The influence of AUC powder characteristics on UO2 pellets. Journal of Nuclear Materials, 153, 148.
[22]. S. Chegrouche, A. Kebir (1992). Study of ammonium uranyl carbonate re-extraction-crystallization process by ammonium carbonate. Hydrometallurgy, 28(2), 135-147.
[23]. Maw-Chwain Lee, Chung-Jyi Wu (1991). Conversion of UF6 to UO2: A quasi-optimization of the ammonium uranyl carbonate process. Journal of Nuclear Materials, 185(2), 190-201.
[24]. Yi-Ming Pan, Che-Bao Ma, Nien-Nan Hsu (1981). The conversion of UO2 via ammonium uranyl carbonate: Study of precipitation, chemical variation and powder properties. Journal of Nuclear Materials, 99(2-3), 135-147.
[25]. Kan-Sen Chou, Ding-Yi Lin, Mu-Chang Shieh (1989). Precipitation studies of ammonium uranyl carbonate from UO2F2 solutions. Journal of Nuclear Materials, 165(2), 171-178.
[26]. M.H. Sadeghi, M. Outokesh, M. Habibi Zare (2020). Production of high quality ammonium uranyl carbonate from “uranyl nitrate + carbonate” precursor solution. Progress in Nuclear Energy, 122, 103270.
[27]. P. Govindan, A. Palamalai, T. Vasudevan, K. S. Vijayan, R.V. Subba Rao, M. Venkataraman, R. Natarajan (2012). Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium in fast breeder reactors (FBRs) fuel reprocessing, Journal of Radioanalytical and Nuclear Chemistry, 295(1).
[28]. V. Baran, F. Skvor, V. Vosecek (1984). Formation of the Ammonium-Uranyl-Carbonate Complexes of the Type (NH4[UO2(CO3)3] Prepared by Precipitative Reextraction. Inorganica Chimica Acta, 81, 83-89.
[29]. L. Hälldahl, M. Nygren (1986). Thermal analysis studies of the reactions occurring during the decomposition of ammonium uranyl carbonate in different atmospheres. Journal of nuclear materials, 138, 99-106.
[30]. L. Hälldahl, M. Nygren (1984). TG, DSC, X-ray and electron diffraction studies of intermediate phases in the reduction of ammonium uranyl carbonate to UO2. Thermochimica Acta, 72(1-2), 213-218.
[31]. B.S. Girgis, N.H. Rofail (1992). Decomposition-reduction stages of ammonium uranyl carbonates under different atmospheres. Thermochimica Acta, 196 (1-3), 105-115.
[32]. S. Korichi, F. Mernache, F. Benaouicha, N. Aoudia, A. Amrane, S. Hadji (2017). Thermal behavior and kinetic modeling of (NH4)4UO2(CO3)3 decomposition under non-isothermal conditions. J. Radioanal. Nucl. Chem., 314, 923–934.
[33]. Korichi Smain , Aoudia Nacera, Benelmaddjat Hanane, Kaci Smina and Ousmaal Nafissa (2019). Kinetic studies of isothermal decomposition of (NH4)4UO2(CO3)3 to uranium oxide. Progress in Reaction Kinetics and Mechanism, 45, 1-12.
[34]. E.H. Kim, J.J. Park, J.H. Park, I.S. Chang, C.S. Choi, S.D. Kim (1994). Thermal decomposition kinetics of ammonium uranyl carbonate. Journal of Nuclear Materials, 209(3), 294-300.
[35]. A. Mellah, S. Chegrouche, M. Barkat (2007). The precipitation of ammonium uranyl carbonate (AUC): Thermodynamic and kinetic investigations. Hydrometallurgy, 85, 163–171.
[36]. Flynn, J.H. (1983). The isoconversional method for determination of energy of activation at constant heating rates. Journal of Thermal Analysis, 27, 95-102.
[37]. Nguyen Trong Hung, Thuan L.B., Thanh T.C., Nhuan H., Khoai D.V., Tung N.V., Lee J.Y., Jyothi R.K., 2018. Modeling the UO2 ex-AUC pellet process and predicting the fuel rod temperature distribution under steady-state operating condition. Journal of Nuclear Materials 504, 191–197.
[38]. Nguyen Trong Hung, Thuan L.B., Tung N.V, Thuy N.T., Lee J.Y., Jyothi R.K., 2017. The UO2 ex-ADU powder preparation and pellet sintering for optimum efficiency: experimental and modeling studies. Journal of Nuclear Materials 496, 177–181.
[39]. Nguyen Trong Hung, Thuan L.B., Khoai D.V., Lee J.Y., Kumar J.R., 2016. Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO2) powder. Journal of Nuclear Materials 479, 483-488.
[40]. Nguyen Trong Hung, Thuan L.B., Khoai D.V., Lee J.Y., Kumar J.R., 2016. Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO2 powders. Journal of Nuclear Materials 474, 150-154.
[41]. R.E. Rundle, N.C. Baenziger, A.S. Wilson, R.A. McDonald (1948). The Structures of the Carbides, Nitrides and Oxides of Uranium. J. Am. Chem. Soc., 70, 99-105.
[42]. R. Herak, B. Jovanovic (1969). On the existence of -U3O8. Inorg. Nucl. Chem. Lett., 5, 693-697.
[43]. B.O. loopstra (1964). Neutron Diffraction Investigation of U3O8. Acta Cryst., 17, 651-654.
[44]. Zhang F.X., Lang M., Wang J.W., Li W.X., Sun K., Prakapenka V., Ewing R.C., 2014. High-pressure U3O8 with the fluorite-type structure. Journal of Solid State Chemistry 213, 110-115.