Nuclear Science and Technology

Journal homepage: https://jnst.vn/index.php/nst

Activity of radioactive isotopes in the offshore seawater at vicinity areas of Phu Quy, Phu Quoc and Bach Long Vy islands

Nguyen Thi Thanh Nga^{1,*}, Le Nhu Sieu¹, Nguyen Dinh Tung¹, Nguyen Van Phu¹, Tran Dinh Khoa¹, VuongThi Thu Hang¹, Nguyen Trong Ngo¹

> ¹Nuclear Research Institute, 01 Nguyen Tu Luc, Dalat, Lam Dong *Corresponding author: thanhngadhsply@gmai.com

Abstract: In this work, activity of radioactive isotopes in some offshore seawater samples at vicinity areas of three islands has been investigated Phu Quy (Binh Thuan province), Phu Quoc (Kien Giang province), and Bach Long Vy (Hai Phong province). The ranges of radioactivity 226 Ra, 238 U, 137 Cs, 90 Sr, and 239,240 Pu in seawater at three offshore islands are $2.09 \div 4.77$ mBq/L, $2.33 \div 4.95$ mBq/L, $0.98 \div 1.45$ mBq/L, $1.22 \div 1.49$ mBq/L, and $0.0045 \div 0.0066$ mBq/L, respectively. These values show that the radioactivities of the above-mentioned radionuclides differ between monitoring periods and between three offshore islands of Vietnam, but which is equal to or lower than the corresponding value according to others seas in Vietnam and Asia – Pacific. The correlation between radioisotopes and properties of seawater (pH, conductance, and salinity) is also shown in this study to assess their impact on the fluctuations of the above radinuclides.

Keywords: Radioactivity in seawater, monitoring, offshore island.

I. INTRODUCTION

Natural radionuclides are sourced from the Earth's crust, the most common being ⁴⁰K, the radioactive chains of ²³⁸U, ²³⁵U, ²³²Th, and some of the less common radionuclides such as ⁵⁰V, ⁸⁷Rb, ¹¹³Cd, ¹³⁸La, etc [1].Moreover, to ensure national energy security and socioeconomic development, countries around the world continue to build and operate nuclear power plants (NPP) due to traditional sources of energy have been saturated or exhausted. As a result, unfortunate accidents occurred such as leaked sealed radioactive sources from nuclear weapons tests (according to statistics from 1945 to 1980, there were more than 500 nuclear weapons tests in the atmosphere and hydrosphere) or accidents from nuclear power plants such as NPP (1986), Fukushima I -Chernobyl Japan NPP (2011) [2,3]. The result is a

series of radioactive isotopes released into the atmosphere such as ³H, ⁹⁰Sr, ¹⁴C, ^{239,240}Pu, ¹³⁷Cs, ¹³¹I, ... For this reason, people are worried about radioactive material released due to nuclear incidents.

In recent years, China has built a lot of NPP and mainly concentrated in the southeast coastal area of China, such as Fangchenggang NPP is about 50 km from Mong Cai city, Quang Ninh, Changjiang NPP on Hai Nam island is 185 km away from Van Don island district, Quang Ninh ...[4]. The operation of NPPs near the border of our country will be potentially hiding many risks of releasing radioactive substances into the marine environment, affecting Vietnam and other countries in the region, especially when incidents occur.

Phu Quy islocated at the coordinates of $10^{\circ}29'-10^{\circ}31'$ north latitude and $108^{\circ}55'-$

108°59′ east longitude. Phu Quy is an island district in the offshore island system in Binh Thuan province, consisting of 10 small islands with a natural area of approximately 30 km². It is adjacent to inland and international seaways and has an important transshipment position between Vung Tau, Phan Thiet, and Truong Sa archipelagos [5].

Phu Quoc is stretched from $9^{\circ}53'$ to $10^{\circ}28'$ north latitude and $103^{\circ}49'-104^{\circ}05'$ east longitude (Kien Giang Province), length nearly 50km. It is the largest island (an area of 593 km²), which is in the South Pole of Vietnam with a triangle shape. Phu Quoc is located at a low latitude and deep into Thailand Bay, so the weather is cool with a tropical monsoon climate, accompanied by a dense river system with a potential groundwater reserve, the water quality is quite good and can be used for supplying water domestic water use and developing tourism and sightseeing activities at the beach [6].

Bach Long Vi island is located at $20^{\circ}07'-20^{\circ}08'$ north latitudeand $107^{\circ}42''-107^{\circ}44'$ east longitude in the center of Gulf of Tonkin. The island is an offshore district of Haiphong city, with a circumference 6.5 km, width of approximately 1.5 km and length of approximately 3 km.

This study was provided some data on the current state of natural and artificial radioactive pollution in three adjacent offshore areas and compared the radioactivity between the nearshore and offshore areas. Besides, the assessment of the correlation between the concentration of radioactive substances in the offshore sea was also conducted. The collected data will be useful in assessing the impact of current and future applications of atomic energy on Vietnam's marine environment.

II. SAMPLING AND RESEARCH METHODS

A. Sampling

In this report, seawater samples were collected at a depth of 1 m at locations 2 - 120 km from the shore of Phu Quy, Phu Quoc, and Bach Long Vi islands (Fig. 1). The collection position is shown in Table 1. The seawater samples were collected by using an electrical pump with a flow of approximately 200-500 L/h. The sample volume, which was used to determine the radioactive isotopes, is about 5 L for ⁴⁰K; 200 L to analysis isotopes: ¹³⁷Cs, ²²⁶Ra, ²³⁸U, and ⁹⁰Sr and 400 L for ^{239,240}Pu. The samples after collection were preliminarily processed by the enrichment method on the island and then transferred to the laboratory for further analysis[7–10].

Fig. 1. Sampling locations in Bach Long Vi, Phu Quy, and Phu Quoc islands in Viet Nam

B. Method of analysis

this study, the samples were In measured on a low background gamma spectrometer equipped with a HPGe detector model GX-3019 having a relative efficiency of 30%, Peak/Compton ratio of 56:1, an energy resolution of 1.90 keV at 1332 keV of 60Co, and sensitivity volume of 138 cm³. The detector was placed in a chamber made oflead, the integral background from 100 - 2000 keV about 2.1 pulses/second. The spectrometer was calibrated by using the soil reference materials IAEA-CU-2006-03 and IAEA-CU-2009-03, which including radioactive isotopes: ⁵⁴Mn, ⁶⁰Co, ⁶⁵Zn, ¹⁰⁹Cd, ¹³⁴Cs, ¹³⁷Cs, ²¹⁰Pb, ²⁴¹Am, ⁴⁰K, ²²⁶Ra, ²³⁴U, ²³⁸U, ²²⁸Ac, ²⁰⁸Tl, ²¹⁴Bi, with a measurement time of about 90,000 s to obtain good counting statistic. The gamma spectral are stored on PC and processed by common standard software such as MAESTRO®-32, SPEDAC, GAMMAW - specialized IAEA software for gamma spectrum analysis.

The ¹³⁷Cs isotope was determined directly through the peak 661.7 keV (85.1%); ²³⁸U was quantified based on photo peak of their progenies ²³⁴Th at 63.3 keV (3.8%) [7].

The ⁹⁰Sr radionuclide was analyzed by radiochemical separation technique to enrich, remove influencing elements. After chemical separation of Sr, the sample was waited in 14 days to meet the ⁹⁰Sr-⁹⁰Y activity equilibrium. We then conducted chemical separation and measurement ⁹⁰Y on a low background beta activity counting system with measuring time from 0.5 - 1 h. The low alpha/beta counting system MPC 9300 uses an airflow rate meter with anti-coincidence and shielded lead layer to reduce the cosmic background to 0.02 counts/second for beta background and 0.001 counts/second for the alpha background. It has 64% efficiency for beta and 31% efficiency for alpha with a mixed source in 25.4 mm diameter [10].

For the ^{239,240}Pu isotopes, the sample also was separated from radioactive by electrolysis method to concentrate the sample on a stainless-steel plate and then conduct the measurement on alpha Ensemble-2 spectrometer with counting time from 24 to 48 hours [8].

C. Quality Assurance and Quality Control

The precision and accuracy of the analysis were performed by analyzing international comparison samples held by IAEA-RML-2018-01 for Cs-134, Cs-137 [11]. The results of the analysis of reference samples correspond to the certified values. The QC results in Table II show that the bias is lower than 10% for all samples except for Sr-90 activity in the seawater sample.

Sampling station	Sampling date	Latitude	Longitude	Water depth (m)	Number of samlpes	Remarks			
Phu Quy island	05/2019	10°30′ N	108°57′ E	1	2	2 km from the shore			
	08/2019	10 30 N			1				
Phu Quoc island	05/2019	10°02′ N	103°59′ E	1	1	2 km from the shore			
	08/2019	10 02 N			2	2 km nom me snore			
Bach Long Vy island	06/2020	20°07′ N	107°43′ E	1	2	~ 5 km from the island, ~ 120 km from shore			

Table I. Sampling locations

Sample	Isotope	Lab value ± uncertainty (Bq/kg)	$\begin{array}{c} Certified/reference \ value \pm uncertainty \\ (Bq/kg) \end{array}$	Bias (%)
IAEA-RML- 2018-01	Cs-134	0.295 ± 0.022	0.3125 ± 0.0031	-5.6
(Seawater)	Cs-137	0.251 ± 0.018	0.2597 ± 0.0026	-3.4
IAEA-368 (Sediment)	Po-210	21.56 ± 1.14	23.02 ± 3.70	-6.3
IAEA-156 (Clover)	Sr-90	14.27 ± 1.15	14.8 ± 1.45	

Table II. Results of reference materials for QC of seawater sample.

III. RESULTS AND DISCUSSION

The results of activity values of natural and artificial radioactive isotopes in seawater collected offshore of at Phu Quy – Binh Thuan, Phu Quoc – Kien Giang, and Bach Long Vi – Hai Phong islands were shown in Table III. The physical and chemical parameters of seawater are presented in Table IV and measured on HI98194 instrument. Measure is as follows: put the template into the clean-up, then insert the probe of the measuring instrument into the sample. After a few minutes, the results displayed on the screen. Depending on that purpose (conductivity, pH,...), we set the measurement parameter at the beginning.

Table III. Radioactive activity in offshore seawater at three islands location.

		Radioactive activity						
Location	Sampling Time	²²⁶ Ra (mBq/L)	²³⁸ U (mBq/L)	¹³⁷ Cs (mBq/L)	⁹⁰ Sr (mBq/L)	^{239,240} Pu (10 ⁻³ mBq/L)		
Phu Quy island-Binh Thuan	05/2019	2.09 ± 0.15	2.51 ± 0.33	1.45 ± 0.29	1.33 ± 0.26	6.6 ± 0.8		
(Offshore)	08/2019	4.32 ± 0.39	4.95 ± 0.43	1.12 ± 0.25	1.49 ± 0.32	4.5 ± 1.0		
Phu Quoc island-Kien Giang	05/2019	2.88 ± 0.28	2.33 ± 0.40	1.06 ± 0.16	1.22 ± 0.25	5.1 ± 1.0		
(Offshore)	08/2019	4.77 ± 0.71	4.83 ± 0.84	0.98 ± 0.17	1.41 ± 0.30	4.5 ± 0.7		
Bach Long Vi island-Hai Phong (Offshore)	06/2020	10.07 ±1.52	8.04 ± 1.08	0.95 ± 0.18	1.20 ± 0.24	3.3 ± 0.3		
Vinh Hai-Ninh Thuan (Near shore) [12]	(2015- 2019)	0.91 ÷ 4.14	1.61 ÷ 7.69	1.14 ÷ 1.44	1.08 ÷ 2.43	1.0 ÷ 6.4		
Asia – Pacificregion [15]		$0.50 \div 4.14$	1.00 ÷ 5.29	0.13 ÷ 2.95	0.67 ÷ 2.01	1.5 ÷ 9.2		

NGUYEN THI THANH NGA et al.

Parameters	Phu Qu	Phu Quoc island		Bach Long Vi island	
r ar ameter s	05/2019	08/2019	05/2019	08/2019	06/2020
pH	7.85	7.79	7.92	7.78	8.18
Conductance (mS/cm)	46.90	46.80	45.90	44.90	49.0
Salinity (‰)	33.80	32.80	32.30	31.20	35.1

Table IV. Physical and chemical parameters of seawater at Phu Quy – Binh Thuan, Phu Quoc –Kien Giang and Bach Long Vy – Hai Phong islands

The results have shown that the radioactivity of radioactive isotopes 226 Ra, 238 U, 137 Cs, 90 Sr, and 239,240 Pu in seawater at offshore of three islands are $2.09 \div 10.07$ mBq/L; $2.33 \div 8.04$ mBq/L; $0.95 \div 1.45$ mBq/L; $1.20 \div 1.49$ mBq/L and $0.0033 \div 0.0066$ mBq/L, respectively.

From the results presented in Table 3, the values of the radioactivity of natural radioisotopes determined at three islands are higher in comparison with the respective data from other seas in Vietnam but it is still in the range of radioactive isotopes in Asia - Pacific.

The ²²⁶Ra isotope has a half-life of 1,600 years. In the marine environment, ²²⁶Ra is easily absorbed into suspended particles and enters marine sediments. The average activity of ²²⁶Ra in seawater at the monitoring points of Binh Thuan and Kien Giang provinces in August is about 1.5 to 2.0 times higher than in May, but the average value is in the range of the recorded values of the other areas of Vietnam and Asia - Pacific region [13-15]. The highest concentration of ²²⁶Ra comes from Bach Long Vi island due to the high total supended solids (TSS) - about 15 mg/l. This island has the longest distance from shore (~140 km from shore) comparing with two other islands.

The 238 U is a naturally occurring radioisotope with a half-life of 4.47 billion years. Compared with other isotopes, 238 U is

more soluble in seawater. In 2019, we found that the value of 238 U individual activities of the two seas at Binh Thuan and Kien Giang in August was about 2 times higher than in May, and their activity range was $2.51 \div 4.95$ mBq/L and $2.33 \div 4.83$ mBq/L, respectively, but it is still within the range of 238 U studies of other seas in Vietnam [13,14] and Asia - Pacific [15]. This is likely because the total supended solids in seawater is much larger than the others samples (about 12.4/3.8). The 238 U isotopes have the same trend of 226 Ra isotope, the concentration of 238 U in Bach Long Vi island has the highest value in three locations.

The ¹³⁷Cs are artificial radioactive isotopes with a half-life of 30 years. Activity value range of ¹³⁷Cs in seawater samples at 03 monitoring points from 0.95 to 1.45 mBq/L. These values have no significant changes and are within the range of values recorded in the nearshore and offshore seas of Vietnam and the Asia - Pacific region [12-15].

According to the monitoring results in 2019, the activity of 90 Sr (half-life of 29 years) in seawater at 03 monitoring points (2 times/year) shows that there is no really clear change between the time collected sample and previous years (activity range: $1.33 \div 1.49$ mBq/L at Phu Quy island and $1.22 \div 1.41$ mBq/L at Phu Quoc island, 1.20 mBq/L at Bach Long Vi island). Radioactivity of 90 Sr is lower than Ninh Thuan nearshore seas but still

is tantamount to the range of radioactivity in offshore waters.

The ²³⁹Pu (half-life of 24,100 years) and ²⁴⁰Pu (half-life of 6,500 years) are two isotopes that have close alpha energy, therefore the total activity of ²³⁹Pu and ²⁴⁰Pu is ^{239,240}Pu. Activity range^{239,240}Pu in seawater at the offshore monitoring points of Phu Quy, Binh Thuan (activity range $4.5 \div 6.6 \times 10^{-3}$ mBq/L), Phu Quoc, Kien Giang (activity range $4.5 \div 5.1 \times 10^{-3}$ mBq/L) and Bach Long Vi, Hai Phong $(3.3 \times 10^{-3}$ mBq/L) does not fluctuate significantly between monitoring periods and has the same activity level as that near the shore of the other seas of Vietnam(activity range $6.0 \div 6.4 \times 10^{-3}$ mBq/L). The activity level of ^{239,240}Pu in seawater through observations during the year is within the activity range of Asia - Pacific region [13-15].

The data of artificial radioisotope concentrations obtained are tendentiously lower than or equal to the same data provided by other authors in the Asia-Pacific region.

Table V. Correlation matrix (Pearson) between radioisotope and physical and chemical parameters of seawater in the study areas

Variables	²²⁶ Ra	²³⁸ U	¹³⁷ Cs	⁹⁰ Sr	^{239,240} Pu	pН	Conductance (mS/cm)	Salinity (‰)
²²⁶ Ra	1.00	0.97	-0.67	-0.36	-0.88	0.79	0.69	0.56
²³⁸ U	0.97	1.00	-0.63	-0.11	-0.88	0.63	0.63	0.48
¹³⁷ Cs	-0.67	-0.63	1.00	0.18	0.91	-0.37	-0.02	0.17
⁹⁰ Sr	-0.36	-0.11	0.18	1.00	0.15	-0.81	-0.45	-0.51
^{239,240} Pu	-0.88	-0.88	0.91	0.15	1.00	-0.55	-0.39	-0.19
pH	0.79	0.63	-0.37	-0.81	-0.55	1.00	0.83	0.79
Conductance (mS/cm)	0.69	0.63	-0.02	-0.45	-0.39	0.83	1.00	0.97
Salinity (‰)	0.56	0.48	0.17	-0.51	-0.19	0.79	0.97	1.00

Values in bold are different from 0 with a significance level alpha = 0.05

The correlation matrix (Pearson) between radioisotope and physical and chemical properties parameters of seawater inthe study areas was shown in Table 5. The ²²⁶Ra isotope correlated with ²³⁸U (²²⁶Ra is the daughter of ²³⁸U) and ^{239,240}Pu. The ²³⁸U correlated with ²²⁶Ra, ^{239,240}Pu (negative). The ¹³⁷Cs correlated with ^{239,240}Pu. The ⁹⁰Sr has no correlation with other isotopes but a weak correlation with pH. The ^{239,240}Pu correlated with ²²⁶Ra, ²³⁸U (negative) and ¹³⁷Cs (positive).

IV. CONCLUSION

To sum up, the activity of natural radioisotopes of ²²⁶Ra, ²³⁸U, and artificial radioisotopes ¹³⁷Cs, ⁹⁰Sr, ^{239,240}Pu observed were not only not significant variation between periods and monitoring locations but also within the value of the Asia Pacific region. The maximum value of these isotopes is much lower than the value of Asia-Pacific and other seas of Vietnam recorded (Ninh Thuan Sea from 2015-2019) [16]. The correlation between radioisotopes and

properties of seawater has alsobeen shown in this study.

Through the monitoring program, the of background baseline data the of radioisotopes in the marine environment has been collected and contributed to the national and regional base data sets. However, to establish the rules of the evolution of radioactive isotopes in the marine environment components and to set up the radioactive database for environmental impact assessment, we need to continue research and expand the scope of monitoring some more offshore and coastal areas [17].

ACKNOWLEDGMENTS

We would like to thank the Ministry of Science and Technology of Vietnam through project KC05.17/16-20 and Report on the implementation of Annually National Projects, Station of Chemical and Radioactive Environment Monitoring and Analysis No. 3, Nuclear Research Institutefor funding this study.

REFERENCE

- [1]. Ryan, T.P., "Nuclear fallout in the Irish terrestrial environment", Ph.D. Thesis, Dublin: University College Dublin, 1992.
- [2]. Director-General of IAEA, "The Fukushima Daiichi Accident",

https://pub.iaea.org.

- [3]. McAulay, I.R., and Moran, "D., Radiocaesium fallout in Ireland from the Chernobyl accident", Journal of Radiological Protection, Vol.9, (1), p. 29-32, 1989.
- [4]. IAEA, The Database on Nuclear Power Reactors China Generated by the Power Reactor Information System (PRIS) Database, IAEA, Vienna, Austria, 2020,

https://pris.iaea.org/PRIS/CountryStatistics/ CountryDetails.aspx?current=CN.

- [5]. Phu Quy island district's website, https://phuquy.binhthuan.gov.vn/1355/34286/6 5180/gioi-thieu-chung.
- [6]. Phu Quoc island district's website, <u>https://phuquoc.kiengiang.gov.vn/trang/gioithi</u> <u>eu.aspx</u>.
- [7]. Laboratory of Environment Analyses (VILAS 525), Center for Environment Research and Monitoring, Nuclear Research Institute, TCCS-NN-13:2017.
- [8]. Laboratory of Environment Analyses (VILAS 525), Center for Environment Research and Monitoring, Nuclear Research Institute, TCCS-NB-16:2017.
- [9]. Laboratory of Environment Analyses (VILAS 525), Center for Environment Research and Monitoring, Nuclear Research Institute, TCCS-N-24:2017.
- [10]. Laboratory of Environment Analyses (VILAS 525), Center for Environment Research and Monitoring, Nuclear Research Institute, TCCS-NB-26:2014.
- [11]. V.Harms, I.Osvath, and D. Osborn, IAEA-RML-2018-01 Proficiency Test for Determination of Radionuclides in Sea-water, International Atomic Energy Agency, Vienna, Austria, 2019.
- [12]. Nguyen Trong Ngo, Le Xuan Thang., et al, "Acrylic fibers coated with copper hexacyanoferrate to determine ¹³⁷Cs activity in coastal seawater of Vietnam", Journal of Radioanalytical and Nuclear Chemistry, https://doi.org/10.1007/s10967-020-07374-4.
- [13]. Station of Chemical and Radioactive Environment Monitoring and Analysis No. 3, Nuclear Research Institute, Report on the implementation of Annually National Projects: *Radioactive environmental monitoring and analysis in Ninh Thuan province; Ganh Rai in Ba Ria Vung Tau province; Phu Quy in Binh Thuan province and Phu Quoc in Kien Giang province.*

[14]. Trong-NgoNguyen, Quang-ThienTran., et al, "Activity Concentrations of Sr-90 and Cs-137 in Seawater and Sediment in the Gulf of Tonkin,Vietnam", Hindawi, Journal of Chemistry, Volume 2020, Article ID 8752606, 8 pages,

https://doi.org/10.1155/2020/8752606.

- [15]. IAEA/RCA/UNDP Project, Asia-Pacific marine radioactivity database (ASPAMARD), https://aspamard.pnri.dost.gov.ph/home, 2018.
- [16]. Circular No. 17/2011/TT-BYT "Promulgating regulations on limits of radioactive contamination in food, Ministry of Health, Hanoi, May 17, 2011.
- [17]. Circular No. 43/2015/TT-BTNMT dated September 29, 2015, issued by the Minister of Natural Resources and Environment on "Report of environmental status, set of environmental indicators and management of environmental monitoring data".