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Abstract: This paper presents the feasibility study of potential application of multi-layer feed-forward 

Artificial Neural Networks (ANN) to predict local void fraction of subcooled boiling flows in vertical 

upward annular channel. A total of 638 experimental data points performed at KAERI and reported in 

literature was selected for training and testing ANN model. The seven basic parameters are chosen to be 

input variables and then the optimal structure of ANN which consist of two hidden layers with 131 

neurons was determined based on traditional Trial-and-Error method after balancing the trade-off 

between the performance and training time. Results showed that the ANN model is capable to accurately 

predict the local void fraction with R2 value of 0.99931 for training data, R2 value of 0.99483 for testing 

data and R2 value of 0.99828 for all data. Also, it proved that the ANN training will be more effective 

with an extensive experimental database.  
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I. INTRODUCTION 

Subcooled boiling flow at low pressure 

condition have become challenging issues in 

safety analysis of water-cooled nuclear power 

reactors since the physical mechanisms of void 

growth and related thermal-hydraulic behaviors 

of system are still not fully understood. The two-

fluid model currently implemented in system 

codes and multiphase computational fluid 

dynamics (MCFD) solvers has been widely 

recognized as a promising tool for dealing with 

the boiling scenario and simulating transients 

and accidents in nuclear power plant. However, 

a lot of constitutive models and correlations are 

required to make the conservation equations 

solvable. The process of sequential calibration 

and validation to obtain model parameters and 

coefficients of correlation is prone to generating 

conflicting parameters tuned on different 

datasets from Separate-Effect and Integral-

Effect Tests [1]. This classical approach could 

lead to unsatisfactory prediction for all quantities 

of interests over a variety of input conditions due 

to the uncertainties of model parameters and 

model forms [2]. 

The artificial neural network (ANN) is 

a powerful machine learning tool for 

modeling and solving some complicated 

physical problems that cannot be described 

with simple mathematical models, and thus 

can be able to cope with the uncertainty 

issues. Many investigators proposed ANN 

methods to predict the void fraction, flow 

pattern, pressure drop and heat transfer 

coefficient, demonstrating the predictive 

capability of the model [3-9]. It is worth to 

noting that there is no study on using ANN 

model to predict the local parameters of 

subcooled boiling flow in vertical channel. 

Therefore, the ability of ANN model for 

local void fraction prediction is investigated 

in this study. 

https://doi.org/10.53747/nst.v11i2.357
https://doi.org/10.53747/nst.v11i2.357
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II. METHODS 

1. Data and Input Parameters Selection 

 Due to the complexity of the 

phenomena, the experimental study has been 

the main research approach to develop 

empirical correlations and models which 

provide the engineers and designers suitable 

choices in engineering practice [4]. With 

ANN approach, experimental databases are 

used in the training process in which the 

network and weights are modified to attain 

better approximation of the desired output. 

The subcooled boiling flow phenomena are 

primarily governed by the flow boundary 

conditions as well as the geometry of the flow 

domain, therefore these key parameters must 

be selected as inputs for ANN structure 

design and optimization. In this work, 

databases performed at KAERI [10-11] in the 

vertical annulus channel (radius of 𝑟𝑜𝑢𝑡) with 

an indirect heater rod (radius of 𝑟𝑖𝑛 )  at a 

channel center was selected for designing and 

training the ANN network. Five key 

parameters of flow boundary conditions 

including mass flux (𝐺), heat flux (𝑞′′), inlet 

subcooling (∆𝑇𝑠𝑢𝑏), inlet and outlet pressures 

(𝑃𝑖𝑛 , 𝑃𝑜𝑢𝑡 ) are chosen as input variables of 

ANN structure. Additionally, two more 

variables indicating the location of measured 

and predicted points are the axial length ( 

𝐿 𝑑𝐻⁄ : the ratio between the flow length from 

the inlet of heated section 𝐿 and the hydraulic 

diameter 𝑑𝐻) and the radial length 𝑟∗ which is 

defined as: 

 𝑟∗ = (𝑟 − 𝑟𝑖𝑛)/(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)   (1)  

Table I presented 12 cases of SUBO 

experiments including total 638 data points used 

in this study. 

Table I. Database of SUBO experiments used in this study 

 2. Structure of Neural Network  

The type of ANN used in this work is 

the multilayer feedforward net. Most 

commonly used transfer function in input 

and output layer is linear transfer function 

(purelin), while the functions of hyperbolic 

tangent sigmoid (tansig) is commonly 

employed transfer functions in the hidden 

Case 
Heat flux Mass flux 

Inlet 

subcooling 

Inlet 

pressure 

Outlet 

pressure 

Heating 

length 

Hydraulic 

diameter 

(kW/m2) (kg/m2s) (K) (kPa) (kPa) (m) (mm) 

C1 470.6 1132.6 19.1 192.9 157.3 3.087 25.52 

C2 363.7 1119.6 19.0 192.7 156.7 3.087 25.52 

C3 563.0 1126.9 18.3 188.9 155.7 3.087 25.52 

C4 465.7 2126.5 19.6 196.9 156.9 3.087 25.52 

C5 567.9 2128.8 19.5 197.6 158.0 3.087 25.52 

C6 465.5 1103.9 29.6 190.7 155.0 3.087 25.52 

C7 473.7 1124.7 17.7 193.9 161.6 3.087 25.52 

C8 373.6 1122.9 17.2 188.3 155.1 3.087 25.52 

C9 565.7 1115.3 17.5 192.8 161.5 3.087 25.52 

C10 471.4 2093.2 17.6 192.2 158.5 3.087 25.52 

C11 563.7 2086.6 18.1 195.7 162.1 3.087 25.52 

C12 470.8 1113.8 29.6 191.8 158.1 3.087 25.52 

Overall 363.7-567.9 1103.9-2128.8 17.2-29.6 188.3-197.6 155.0-162.1 3.087 25.52 
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layer. It is worth noting that a three-layer 

network (two hidden layers) can 

approximate any non-linear function [12]. 

To determine the number of neurons in each 

hidden layer, a traditional Trial-and-Error 

method was utilized by changing the number 

of neurons in the hidden layer and checking 

the values of the mean square error (MSE) 

and the coefficient of determination R2  as 

defined below: 

𝑀𝑆𝐸 =
∑ (𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑝𝑟𝑒𝑑)

2𝑛
𝑘=1

𝑛
 (2) 

𝑅2 = 1 −
∑ (𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑝𝑟𝑒𝑑)

2𝑛
𝑘=1

∑ (𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑚𝑒𝑎𝑛)
2𝑛

𝑘=1

∈ [0,1] (3) 

3. ANN Training and Testing 

The SUBO data is collected and 

randomly divided into two parts based on 

practical experience: 75% is used for 

training and 25% is used for testing. Each of 

these models has its weights and biases 

initialized using Nguyen-Widrow method 

and its subsequently trained with the 

Levenberg-Marquardt algorithm. The test 

data is considered to have the same role as 

the validation data. The error of the test data 

is continuously monitored during the 

training process. After a certain number of 

iterations (or epochs), if the test error keeps 

increasing, the training process is stopped. 

This method is called “early stopping” 

criterion applied to avoid overfitting, which 

occurs when the model produces high 

accurate results on the training set but does 

not work well on the testing set; in other 

words, the model is not generalizable.  

III. RESULTS AND DISCUSSION 

After testing different configurations of two 

hidden layers, some findings are listed as 

bellows: 

 Training performance will be better as the 

number of neurons in the hidden layer 

increases; however, training time will also 

increase. There is a need to balance 

performance and time accordingly. 

 If the number of neurons in the last hidden 

layer is greater than 1 (2, 4, 9 and 16), the 

predicted values are negative as shown in 

Figure 1. Consequently, the number of neurons 

in the second hidden layer is set to 1.  

  
Configuration (7-15-2-1) Configuration (7-15-4-1) 

  
Configuration (7-15-9-1) Configuration (7-15-16-1) 
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Configuration (7-15-1-1) 

Fig. 1. Compare the prediction results with the Testing Data of some network configurations. 

Therefore, the ANN configuration used 

in this study have a general structure as [7 - 

(hidden layers) - 1 – 1. The next step is to 

find the optimal number of neurons in the 

hidden layers. Each ANN configuration is 

trained 15 times with random initiated 

weights and biaes, and then the averaged 

values of training performance (or training 

accuracy) and coefficient of determination in 

test data were obtained. 

Table II shown the gradual improvement 

of the performance (MSE) and the R2 

coefficient for testing data as the number of 

neurons in the hidden layer increase. However, 

the corresponding training time also increases, 

requiring a balance between training accuracy 

and time. After testing with many different 

configurations, it is possible to get notes and 

recommendations in choosing an appropriate 

ANN based on the values of MSE and R2. It 

can be seen that the most suitable of ANN 

configuration is (7-80-50-1-1). 

Table II. Comparison of different configurations 

No. of 

neurons  
Configuration 

Criteria 

Training 

accuracy (MSE) 

Testing 

accuracy 

(R2) 

Time 

(s) 

31 
7 – 30 – 1 – 1 2.06E-05 0.75409 18 

7 – 15 – 15 – 1 – 1 3.99E-07 0.82398 31 

61 7 – 30 – 30 – 1 – 1 3.91E-09 0.87638 242 

81 
7 – 50 – 30 – 1 – 1 1.38E-09 0.94452 268 

7 – 30 – 50 – 1 – 1 1.17E-09 0.92271 300 
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7 – 40 – 40 – 1 – 1 8.94E-10 0.93125 249 

101 7 – 50 – 50 – 1 – 1 9.41E-10 0.94893 588 

111 7 – 60 – 50 – 1 – 1 7.16E-10 0.95949 739 

121 
7 – 70 – 50 – 1 – 1 6.06E-10 0.95660 770 

7 – 60 – 60 – 1 – 1 6.21E-10 0.95459 748 

131 
7 – 70 – 60 – 1 – 1 5.72E-10 0.96277 1237 

7 – 80 – 50 – 1 – 1 5.30E-10 0.96622 1389 

141 
7 – 80 – 60 – 1 – 1 4.73E-10 0.96590 1422 

7 – 70 – 70 – 1 – 1 4.90E-10 0.96071 1410 

151 7 – 80 – 70 – 1 – 1 4.30E-10 0.96041 1664 

161 7 – 80 – 80 – 1 – 1 3.41E-10 0.96574 2440 

Figure 2 show the comparison results 

between the training and the test errors (MSE 

values) during the training process of some 

ANN configurations which reflect the quality 

of the training model. The test error and the 

training error are similar and tend to decrease 

in the few starting epochs. However, after the 

"Best" point corresponding to the epoch 

where the test error reaches its minimum 

value, the value of the test error increases 

while the value of the training error 

decreases. This proves that overfitting occurs 

at the epochs behind the “Best” position. 

Therefore, the ANN model at the “Best” 

position is saved as the best model in the 

corresponding training session. From this 

point of view, overfitting can be avoided by 

using the early stopping method. 

Figure 3 shown a comparison of the 

predicted results with experimental results 

using 75% data for training, with the 

coefficients RTest = 0.99483 and RAll = 

0.99828. Most of the data points are located 

near the 1:1 linear regression line and within 

15% error, showing good capability to 

accurately predict the local void fraction. The 

results predicted by the ANN model are also 

presented in Figure 4 in terms of the radial 

distribution of the Local Void Fraction for 

some cases at different heights 𝐿 𝑑𝐻⁄ . It can be 

seen that the predictive power of the ANN is 

relatively consistent with the experimental 

data in which the ANN has been trained. There 

are some predicted results with high deviation 

because they are not in the training data 

(Figure 4a, 4f). Figure 5 shows a comparison 

results of local void fraction distribution at 

height 𝐿 𝑑𝐻⁄  = 18.4 of case C9 when training 

data has no information of experimental data 

points in this case (Figure 5a) and when the 

training data with information points in 

experimental data (Figure 5b). This is an 

example that shows the ability of ANN model 

to predict and interpolate in a data range.  
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(a) Configuration (7-30-1-1) 

 

(b) Configuration (7-50-50-1-1) 

 

(c) Configuration (7-80-50-1-1) 

Fig. 2. Comparison results between the training and test errors during the training process 
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 (a) (b) 

Fig. 3. Compare predictive and experimental results for testing data (a) and all-data (b) uses 75% of 

the data for training 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Fig. 4. Comparisons of radial distribution between the predicted results and experimental results 
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(a) (b) 

Fig. 5. Comparisons of the predictability of the neural network when there is no training data available (a) and 

when training data is available (b) 

IV. CONCLUSIONS 

In this study, 638 experimental data 

points of SUBO test facility were used to 

train and test a 5-layers feedforward neural 

network with 7 input parameters and total 

131 neurons for prediction of local void 

fraction in vertical annular subcooled 

boiling channel. The results clearly showed 

the possibility that the ANN could be used 

in predicting local parameters of two-phase 

flow. Due to the limitation in the training 

data, the ANN-based model in this study is 

recommended to be limited to the data 

region of the SUBO data. In order to 

improve the accuracy and extend the 

predictability of the model, it is necessary 

to add more databases. Besides, the next 

important research is to develop the method 

of optimization of ANN structural. This 

study is the first step to build the ANN 

model to replace mathematical models 

implemented in CFD code. 
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