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Abstract: Radiation portal monitors (RPMs) are now stationed at strategic areas (airports, ports, etc.) to 

identify the illegal transportation of radioactive sources and nuclear items. RPMs are typically fitted 

with plastic scintillations detectors with high detection efficiency. Radioisotope identification from the 

gamma spectrum acquired on this detector usually is not regarded due to the low resolution. This 

research describes an artificial neural network-based isotope identification algorithm applied to the 

gamma spectrum collected from the RPM's PVT detector. Measured and simulated gamma spectra of 5 

radionuclides are used for training and validating the proposed model, namely 241Am, 133Ba, 137Cs, 
60Co, and 152Eu. The recognition accuracy of the proposed model with these radionuclides are 99.0%, 

98.0%, 99.0%, 97.5%, and 98.5%, respectively. The model still recognizes the training isotopes with 

the lowest accuracy of 89.0% for spectra with the displacement in the range of 20%. 

Keywords: Artificial neural network, plastic scintillation detector, nuclide identification algorithms. 

I. INTRODUCTION 

Radiation portal monitors (RPMs) are 

high-sensitivity radiation detection devices, 

often deployed at airports, seaports, and 

borders to detect individuals and vehicles 

illegally transporting sources and special 

nuclear materials (SNMs). RPMs are usually 

equipped with large-volume gamma and 

neutron detectors that increase the ability to 

detect radiation sources with low activity. 

Due to their advantages, including fast rise 

and decay time, high optical transmission, 

ease of manufacturing, low cost, large 

available size, and high durability, plastic 

scintillation detectors are now the most 

widely utilized gamma detector on RPMs, but 

due to the low Z-number components of the 

material and low density, the poor energy 

resolution shows the broad energy spectrum 

without clear photo-peak identifying the 

radionuclides. With limited spectral 

information, most RPMs utilize these 

detectors utilized conventional gross-count 

(GC) or energy windowing (EW) algorithms 

to detect radioactive sources. By comparing 

the gross counting rate to the background 

counting rate, the GC algorithm may identify 

the existence of radioactive sources, but it 

cannot discriminate between different types 

of radioactive sources. Based on their 

emission energy, the EW algorithm evaluates 

the counting rate ratios between two or more 

regions in the spectra to determine whether 

radioactive sources are natural or artificial. 

The capacity to identify radioisotopes from 

plastic-based spectrometers, on the other 

hand, is severely limited.  
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Machine learning and deep learning 

algorithms have advanced significantly in the 

last decade and are now used in a variety of 

sectors, including nuclear physics and 

engineering. Examples of such applications 

include (i) nuclear power plant health and 

management (ii) radiation protection (ii) robotic 

and control system optimization. Model 

selection is based on the complexity of the 

training dataset, the required output of the 

problem, and the performance of the 

computational hardware. For radioisotope 

identification tasks, many learning-based 

methods have been presented in the literature 

[1]–[11]. The authors of [1] introduces a simple 

neural network for identifying automatically 

radiation spectra obtained in NaI(Tl) 

scintillation detector and Ge(Li) semiconductor 

detector. This approach can determine a given 

isotope presented in a mixture of elements as 

well as the relative proportion of each element 

by using Linear Associative Memory model 

trained by combination of a set of well-known 

spectra. However, this artificial neural network 

(ANN) is only applicable to high-resolution 

spectroscopy system (HPGe or equivalent), 

needing high-precision standard radiation 

sources in terms of activity to ensure 

recognition accuracy, also high requirements 

for energy calibration, detection efficiency, and 

measurement geometry during model training 

and validation. The authors of [2] has 

introduced a fast isotope recognition algorithm 

applied on the RPMs based on the combination 

of the Bayesian algorithm and spiking neural 

network. However, the model in this study is 

applicable to well-type NaI(Tl) detector, which 

are difficult to apply on the low-resolution 

detector, i.e., the plastic scintillation detector. 

The authors of [7] investigated the first 

application of the ANN model in the analysis 

for spectra from polyvinyl toluene (PVT) 

scintillation detector in RPMs, but this study 

still faces many difficulties in distinguishing 

NORMs isotopes from illegally transported 

radioactive materials. Recently, the authors of 

[11] built a radioisotope warning algorithm 

applied on PVT-based RPMs. There are two 

steps in the alarm algorithm: (i) Generate an 

alarm based on the conventional GC algorithm 

(ii) Process the spectrum in step 1 by using an 

ANN to identify radioisotope groups and reduce 

the probability of a nuisance alarm. The model 

was validated on eight radioisotopes, although 

they were only split into three separate groups 

based on their feature vectors. The approach 

requires extensive pre-processing of the input 

data; however, as the number of isotopes grows, 

particularly those with similar feature vectors, 

the problem gets complex, and grouping the 

isotopes becomes challenging. On a 2”×2” EJ-

200 detector, the authors of [7] constructed a 3-

layer fully connected ANN for simultaneous 

identification of multiple radioisotopes from 

PVT scintillation detector. Although this ANN 

achieves good accuracy, however, labeling too 

many classes (16 labeled for the 4 radioisotopes 

in training data set) might be challenging as the 

number of isotopes increases. 

This paper presents a full-connected 

ANN to identify individual as well as mixture 

of radioisotopes in gamma spectra obtained in a 

large volume EJ-200 PVT scintillation detector. 

The isotopes used to train the model includes: 
241Am, 133Ba, 137Cs, 60Co, 152Eu.  These isotopes 

were selected based on homeland security and 

emitted energies that range from 60 keV to 

1400 keV. The input data of the ANN is a 1024 

- channel normalized spectra. In addition, the 

model has ability to accurately identify isotopes 

in spectra with the relative peak positions 

shifted within ±10%. 

II. MATERIAL AND METHODS 
 

A. Artificial neural network 

An artificial neural network is the piece 

of a computing science designed to simulate the 
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way the human brain and processes information. 

It is the foundation of artificial intelligence (AI) 

and solves problems that would prove 

impossible or difficult by human or statistical 

standards. ANNs have self-learning capabilities 

that enable them to produce better results as 

more data becomes available. Mathematically, 

ANN is a model that attempts to map an 

arbitrary function from ℝM to ℝN where M and 

N are any integer. ANN accomplishes this by 

mimicking biological neurons. The structure of 

an ANN consists of an input layer, one or more 

hidden layers, and an output layer. Each neuron 

operates by summing the products of the 

previous layer values and each individual 

weight connection nodes. The value at one 

neuron before being passed to the next layer is 

transformed through a nonlinear function called 

the activation function, typically sigmoid, 

ReLU, Tanh, and etc. There is no method that 

can directly determine best-performing 

hyperparameters of the model. These 

parameters can be achieved by design an 

automated search to test different network 

configurations. Some popular search strategies 

include: random search, grid search, heuristic, 

exhaustive. 

In this paper, an ANN with the most 

basic structure in the form of multi-layer 

perception (MLP) is introduced. The structure 

of this ANN is illustrated in   

Fig. 1 with 1024 neurons in the input 

layer, N neurons in the hidden layer and 6 

neurons in the output layer corresponding to 6 

radioisotope classes. The output of the hidden 

layer or the output layer layer is computed as 

in Eq.1: 

𝑎𝑖
(𝑙)

= 𝑓 (∑ 𝑤𝑗𝑖
𝑙 𝑎𝑗

(𝑙−1)
𝑚

𝑗=1
+ 𝑏𝑖

𝑙)         (1) 

𝑎𝑖
(𝑙)

 is the output values of the hidden 

layer or output layer; 𝑤𝑗𝑖
𝑙  are the weights of the 

hidden/output layer; 𝑏𝑖
𝑙  is bias of input layer or 

output layer; m is the number of nodes in the 

hidden layer or the output layer. In this study, 

the ANN model choose ReLU and sigmoid as 

activation functions for the first and the second 

layer, respectively. The ReLU and sigmoid 

activation functions are described as follows: 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥)           (2) 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝜎(𝑥) =
1

1+𝑒−𝑥
      (3) 

The result at the output layer is rounded 

to two binary values of 0 and 1 corresponding 

to the presence or absence of that isotope on the 

input spectrum. 

B. Data training set creation 

  

Fig. 1. The structure of the proposed ANN 
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Fig. 4. Gamma spectra of 60Co and 152Eu source 

with different gain shift 
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The training data set for this proposed 

model was generated in two ways: experimental 

measurement and MCNP simulation. The 

radioisotopes used for training model are 

include 241Am, 133Ba, 137Cs, 60Co, and 152Eu. 

The simulation model of the PVT detector is 

based on the dimensions given by the 

manufacturer. The source-to-detector distance 

was fixed to 30 cm; the FT8 GEB (Gaussian 

broadening) card is investigated and applied to 

minimize the discrepancy between the 

simulated and the measured gamma spectra. 

The number of simulated particles is randomly 

selected in the range of 104 ÷106 particles. 

Particularly, the background spectrum used in 

the model training process were measured by 

the EJ-200 detector with a random interval 

between 1 ÷ 30s. 

The compton scattering region from the 

simulated spectrum will be substantially lower 

than the actual measured spectrum since the 

MCNP simulation model does not include 

materials surrounding the detector. To minimize 

the disparity, 30 mm thick aluminum plates are 

put around the detector to imitate dispersion from 

the environment. In Figure 3, the experimental 

measurement spectrum and the simulated 

spectrum using 137Cs radiation source are 

displayed. As shown in the Figure 3, the peak  

position and Gaussian expansion of the calculated 

MCNP spectrum and the measured spectrum 

quite identical. After placing aluminum plates 

around the detector, the low-energy scattering 

region is also matched. The simulated spectrum 

does not contain count in the area with energy 

greater than the maximum emitted energy, 

however the count can still be seen in this region 

in the experimental spectrum due to the pulse 

pile-up. The contribution of this energy region to 

the overall spectrum, however, is negligible. 

After the measurement, the gamma 

spectrum is chosen at random and merged into 

 

Fig. 2. The simulation model of plastic 

scintillation detector and radiation source 

 

 

Fig. 3. Measured and simulated gamma spectra of 
137Cs radiation source with corresponding 

Gaussian broadening parameters 
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Fig. 6. Cross entropy loss comparison according 

to different optimizer 

classes of 2, 3, 4, and 5 isotopes. The source-to-

background count rate ratio are adjusted at 1:1 

and 1:2, respectively. The spectrum is 

normalized by dividing count rate in each 

channel to the maximum count rate. In addition, 

2000 spectra with gain shifts in the 10% range 

were created for training ANN model. The gain 

adjusted spectra are shown in the Figure 4. 

C. Validation and test data set creation 

  To create the validation and test sets, the 

gamma spectra were measured all combination 

of radioisotopes. For the test set, the radioactive 

check sources were placed 1 cm, 5 cm and 10 

cm away from the detector (referred to as 1 cm 

away, 5 cm away and 10 cm away, respectively) 

and measured from 1s to 10s with intervals of 1s. 

This procedure was repeated 3 times. Therefore, 

there were 3000 spectra with 1024 channels in 

the test set. For the validation set, the spectra 

were generated for only the 10-cm-away case, 

and a spectrum of 1024 channels was extracted 

in a manner identical to that described in Section 

2.2. The number of spectra in the validation set 

was 1440. The experimental setup to create 

training dataset is depicted in Figure 5. The 

radioactive source and detector are mounted to 

holders with a fixed source-to-detector distance. 

The signal from the detector is amplified and 

analyzed on the self-developed digital 

multichannel analyzer (DMCA)[12]. The 

radiation spectrum from the DMCA is 

transmitted to the PC for analysis and storage. 

D. ANN model evaluation 

In machine learning, Optimizers are 

algorithms or methods used to change the 

attributes of the neural network such as weights 

and learning rate in order to reduce the losses. 

The optimizer functions are selected based on 

the accuracy of the model after the first 1000 

iterations. The optimizers ADAgrad, ADAdelta, 

and FTLR have very poor convergence during 

training, as seen in Figure 6. SGD and 

Adammax optimizers have average 

convergence, whereas RMSProp, Nadam, and 

Adam optimizers have the best convergence. In 

which RMSProp optimizer converges well for 

iterations under 500, while Nadam and Adam 

provide higher accuracy as the number of 

iterations grows. The model in this study used 

Adam to update all model parameters. 

 

Fig. 7. Accuracy of the proposed ANN versus repeated 

k-fold cross validation (k=10, n_repeated = 5) 

Fig. 5. Experimental set-up for the gamma  

spectra measurements 



CAO VAN HIEP  et al. 

51 
 

Repeated k-fold cross-validation 

provides a way to improve the estimated 

performance of a machine learning model. The 

k-fold cross-validation procedure divides the 

dataset into k non-overlapping folds. A total of 

k models are fit and evaluated on the k hold-out 

test set.  The cross-validation procedure is 

repeated multiple times (referred to as 

n_repeated parameter) and the mean result 

across all folds from all runs is reported. This 

mean result is expected to be a more accurate 

estimate of the true unknown underlying mean 

performance of the model on the dataset, as 

calculated using the standard error. 

 

 

In the k-fold cross validation method, k 

is the most important parameter. In this study, 

the value of k was fixed at 10, and n_repeated 

was fixed at 5, commonly used values and 

proven to give small error, low variance. The 

accuracy of the mode on the data set are 

reported in the Figure 7, it can be seen that the 

model has high accuracy (~90% at 50 

iterations, ~97% at 5000 iterations and 99% at 

10000 iterations) with low variance.  

 

Fig. 8. Accuracy of the proposed ANN versus repeated k-fold cross validation (k=10, n_repeated = 5) 
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Fig. 9. 152Eu gamma spectra with the source-background count rate ratio of (a) 1:2 and (b) 1:1 
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Fig. 10. Accuracy of the proposed ANN versus 

repeated k-fold cross validation (k=10, n_repeated = 5) 

III. RESULTS 

A. Single isotope identification 

In order to evaluate the performance of 

the model in identifying single-radioisotope, 

two normalized confusion matrix with the 

source to background ratio equal to 1 and 0.5 

are presented in the Figure 8. 

ANN model is validated with 200 gamma 

spectra in each case. An example of the 152Eu 

isotope spectrum with different count rate ratios 

is shown in Figure 9. 

From the above 2 confusion matrices, it 

can be seen that: in the case of low count 

contribution from the source, the probability of 

isotope detection is lower than in the other case. 

With a count rate ratio of 1:2, the probability of 

detecting 241Am isotope is the lowest with 95%, 5% 

false negative of 241Am source falls into the cases 

of background prediction. This can be explained 

by the fact that the background spectrum and the 
241Am source spectrum are quite similar, 

especially when the count rate contribution from 

the 241Am source is smaller than that of the 

background. The other sources in the training set 

have an accuracy rate of 96.5 ÷ 97.0%. 
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Fig. 11. Accuracy of the proposed ANN with excluding shifted spectra in the training data set  



CAO VAN HIEP  et al. 

53 
 

In this case that the count ratio of the 

source to the background is 1:2, the 

probability of detecting the correct isotope 

ranges from 98 ÷ 99%. For the background, 

the rate of correct identification is 100%. Pair 

of isotopes with probability of 

misidentification include 137Cs and 60Co, 
152Eu and 133Ba. This occurs with isotopic 

pairs with similar emission energy leading to 

similar spectral shapes, especially when the 

count rate of the radiation source is low. 

B. Mixture isotopes identification 

In order to evaluate the effectiveness of 

identifying isotopes mixtures, the accuracy of 

the model when evaluated the mixture of 

radioisotopes are investigated. Each 

combination of 250 spectra has the contribution 

proportions of randomly selected isotopes. The 

accuracy of identification with these 

combinations is shown in Figure 10, Figure 11. 

From Figure 10,Error! Reference source not f

ound. it can be seen that the accuracy of the 

model decreases with increasing number of 

isotopes present in the spectrum. When many 

isotopes are present at the same time, it 

becomes more difficult to accurately identify all 

the isotopes because the spectral features will 

be dominated by the isotopes with a large 

contribution ratio.  

The gamma spectrum obtained on the 

scintillation detectors is strongly dependent on 

the ambient temperature, especially in outdoor 

measurement [12]. Therefore, the recognition 

model needs to be verified with gain-shift 

gamma spectra. In this study, the model is also 

verified with spectra that has a gain shift up to 

99.2 98 98.8

93.6

99.6
98 98

92.8

100
98.4 98.8

93.2

100
98.4 98.4

93.2

100
98.4 98.8

93.6

100
98.4 98.4

93.6

99.2 98.8 97.6

93.6

89.2

95.6 95.2

91.6

2 nuclides 3 nuclides 4 nuclides 5 nuclides

0

20

40

60

80

100

A
c
c
u
ra

c
y
(%

)

Combination

 1.05

 0.95

2 nuclides 3 nuclides 4 nuclides 5 nuclides

0

20

40

60

80

100

A
c
c
u
ra

c
y
(%

)

Combination

 1.02

 0.98

2 nuclides 3 nuclides 4 nuclides 5 nuclides

0

20

40

60

80

100

A
c
c
u
ra

c
y
(%

)

Combination

 1.01

 0.99

2 nuclides 3 nuclides 4 nuclides 5 nuclides

0

20

40

60

80

100

A
c
c
u
ra

c
y
(%

)

Combination

 1.1

 0.9

Fig.12. Accuracy of the proposed ANN with different gain shifted gamma spectra 
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±10%. Accuracy values were investigated at 

±1%, ±2%, ±5%, ±10% gain drift and shown 

in the Figure 11. From Figure 11, it can be 

seen that the accuracy of the model decreases 

with the larger gain shift, and with the 

decrease in the number of isotopes appearing 

in the spectrum. 

This can be explained that the ANN is 

trained only with the well-calibrated training 

data set. When changing the gain factor by 

+10%, the accuracy of radionuclide recognition 

with a mixture of 2 isotopes was only 33%, and 

2% when the -10% gain shift is applied. The 

accuracy for the mixtures of 3, 4, and 5 isotopes 

are 44% to 86%. This accuracy reduction due to 

the ANN lacks training on shifted gamma 

spectra. To overcome the above limitation, 500 

spectra with gain shift randomly selected in 

range of 10% are added to the training data set. 

The accuracy of the ANN after retraining are 

shown in Figure. 12. On Figure. 12, it can be 

seen that the accuracy with isotope 

combinations is increased to 93.2 ÷ 98.5% with 

the gain variation up to 10%. 

This study proposed an ANN-based 

nuclides identification algorithm that applied on 

PVT scintillation detection. Different from 

work [8], this study presents a method that is 

well applicable to scintillation detectors with 

poor energy resolution. This simple approach 

can overcome the limitations that arise from the 

conventional gross-count algorithm or energy-

weighted window algorithm. 

III. CONCLUSIONS 

This study presented an ANN model that 

successfully identifies single/mixtures 

radioisotopes on low-resolution PVT-based 

spectrometer. The hyperparameters are 

optimally selected for the training data set. The 

proposed model has high accuracy when 

identifying with a combination of one or more 

radioisotopes, even when the spectrum has a 

gain shift up to 10%. This study has confirmed 

the application of deep learning models in the 

practical problem of isotope identification on a 

low-resolution gamma spectrometer.  

Some aspects of radionuclide recognition 

algorithm for plastic scintillation detector can be 

further explored based on this work. The number 

of input data dimensions is still high (1024 for this 

study), so dimension reduction methods need to 

be applied to reduce the model architecture and 

optimize training time. In addition, the number of 

considered isotopes also needs to be increased to 

improve the model's applicability. 
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