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Abstract: The most widely studied LOCA (Loss of Coolant Accidents) is a rupture of a cold leg pipe 

causing the Reactor Cooling System to depressurize first, with different break sizes corresponding to 

the change in trigger signal from the Instrument and Control System (I&C System) such as pressure, 

temperature, power, pressure vessel water level, etc. is different. Therefore, the response of nuclear 

power plant varies considerably with the size of break. To mitigate the consequence of LOCA with a 

given break size, it is necessary to design the emergency core coolant systems so that the fuel is cooled 

efficiently during all phases of the accident. Therefore, the size of rupture needs to be detected and 

identified as soon as possible right after reactor scram. To achieve this goal, this study is conducted to 

investigate the applicability of artificial neural networks (ANN) for recognizing LOCAs, especially 

identifying the rupture sizes of the LOCAs according to the changes of operational parameters of 

VVER-1000 nuclear power plant. This study mainly focuses on building, training, and optimizing the 

artificial neural networks using simulation databases obtained from the RELAP5 simulation program 

for VVER-1000 reactor technology. Results clearly showed the potential application of ANN-based 

model for detecting the break size even with uncertainty of input parameters added. 
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I. INTRODUCTION 

The events related to the Loss of Coolant 

Accidents (LOCA) in the nuclear power plant 

are evaluated as one of the incidents causing 

serious consequences. The LOCA scenario is 

also considered to be one of the prominent 

scenarios that safety and operational systems 

are designed to respond to. Corrective actions 

must be applied whenever potentially unsafe 

conditions occur. The diagnosis of a potentially 

unsafe plant condition should be quick and 

accurate. The objective of the plant diagnostic 

system is any potentially unsafe operating 

scenario is to give plant operators and engineers 

sufficient time to formulate, confirm, initiate, 

and perform the appropriate corrective actions 

[1][2]. Therefore, the study of identification 

methods is very necessary.  

Nuclear power plants are higgly complex 

systems that are operated and monitored by 

human operators. When faces with an unplanned 

transient, such as a plant accident scenario, 

equipment failure or an external disturbanceto 

the system, the operator has to carry out the 

diagnostic and corrective actions based on the 

process instrument readings [3]. Depending upon 

the severity of an accident, instrument’s readings 

might not give a clear indication of an anormaly 

at its incipient stage. In addition, difficulties 

encountered in analyzing nuclear power plant 

operational data are uncertainty, incomplete, 
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intermittent, and noisy [1]. Therefore, it 

necessitates developing an intelligent system that 

will assist the operator to identifysuch transients 

at the earliest stages of their developments. The 

artificial neural network (ANN) is a powerful 

machine learning tool for solving complicated 

problems and improving the ability to identify 

problems in the operation of nuclear power plants. 

Recently, many studies aimed at applying ANN 

in diagnosis and fault identification in nuclear 

power plants have been conducted. Bartlett and 

Uhrig (1991) [1] trained the ANN to classify 

selected nuclear power plant accident conditions. 

A real-time ANN learning methodology with an 

adaptive real-time monitoring capability is 

descrived for plant-wide data from an operationg 

nuclear power plant by Nabeshima et al., 1994 

[4]. Fernandez et al., 2017 [5] created neural 

networks topologies to use Multi-Application 

Small Light Water Reactor integrated test 

facility’s data and evaluate its capability of 

predicting the systems behavior during various 

core power inputs and a loss of flow accident.  

To mitigate the consequence of LOCA 

with a given break size, it is necessary to design 

the emergency core coolant systems so that the 

fuel is cooled efficiently during all phases of 

the accident. Therefore, the size of rupture 

needs to be detected and identified as soon as 

possible right after reactor scram.  

To achieve this goal, in this study, the authors 

will proceed to construct the LOCA accident 

simulation database with small break size (SB-

LOCA) at the cold-leg of the VVER-1000 nuclear 

power plant on the RELAP5 program. Using 

simulation database to build ANN-based model to 

identify the break size. Results clearly showed the 

potential application of ANN-based model for 

detecting the break size even with uncertainty of 

input parameters added. Its ability to provide 

technical data can help decision makers to take 

actions more rapidly, identify safety issues, or 

provide an intelligent system with the potential of 

using pattern recognition for reactor identification 

and classification.  

II. THE SIMULATION DATABASE 

In this report, the VVER-1000 nuclear 

reactor technology is performed to construct the 

simulation model in RELAP5 program. The 

VVER-1000 reactor technology is widely used 

in Russia with a horizontal stream generator 

design. The reactor coolant system including 

two loops, reactor vessel, steam generator is 

modeled. The entire operation of the reactor as 

well as thermal hydraulics phenomenon with 

different failure scenarios is simulated by the 

RELAP5 program. The system nodeification 

diagram is presented in Fig.1.   

The LOCA scenario was developed to 

simulate a nuclear power plant state of loss of 

coolant flow due to the presence of a break at the 

cool-leg location with small size (SB- LOCA). 

After calculating by RELAP5 program with the 

change of 39 different break sizes, a set of data 

about the change of 34 parameters indicating the 

operational characteristics of the nuclear power 

plant over time as follows: pressure, 

temperature, mass flow rate, water level, power, 

etc. The changes of the parameters were 

monitored both before and after the scram time 

with time steps of three seconds and one second, 

respectively. The database is normalized and 

used for analysis, determining parameters that 

have little or no change over time for different 

break sizes, to select key parameters that are 

useful in determining detect the break size. Fig. 

2 shows the change of some key parameters over 

time with different break sizes such as CL25, 

CL28, CL30 corresponds to the size is 25 mm, 

28 mm and 30 mm, respectively. There are 12 

most important key parameters were selected, 

which were significantly influenced in the 

evolution of LOCAs, detailed in Table I. 
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Fig. 1. The diagram of system nodeification in RELAP5 program

Table I. Twelfth key parameters of simulation database 

No. Nomenclature Name 

1 p Lower Plenum bot. 

2 p Upper Plenum mid 

3  p SG per Plate-S Dryer 

4 mflowj CL Junction 

5 tempf Fluid temperature at Hot Leg 

6 rktpow Kinetic Power 

7 mflowj SG-BRU-K valve 

8 cntrlvar PRZ Collapsed Level 

9 cntrlvar SG-Level 

10 mflowj HL Junction 

11 p HL-Upper Plenum 

12 p CL-pump connect 
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Additionally, eight cases with break 

sizes varying from 30mm to 100mm, in which 

were 100 random cases with different changes 

of key parameters. This is to consider 

the uncertainty factor of the phenomenon, 

which improves the predictive power of 

the ANN-based model of the uncertainty 

input parameters. 
 

  

  
Fig. 2. The change of some key parameters 

 

Fig. 3. The data division for ANN training 
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Fig. 4. Structure of ANN-based model

III. INDENTIFICATION METHOD USING 

ANN-BASED MODEL 

The simulation data including the change 

of 12 key parameters obtained through the 

RELAP5 program is used in the training process 

in which the weights and biases are modified to 

attain better approximation of desired output. 

The output target values correspond to the break 

size in each case. The simulation database 

consists of 839 data points corresponding to 

different cases of 39 break sizes varying from 

25mm to 100mm. The input of each data point is 

a collection of Time Series Data, each time 

series data describing the change over time of a 

corresponding key parameter. Fig. 3 presents the 

structure of the ANN-based model to detect the 

break size using the collection of time series data 

as the ANN input. 

The type of ANN used in this work is 

the multilayer feedforward net, including one 

input layer, one output layer, and two hidden 

layers. The transfer function in input and 

output layer is linear transfer function 

(purelin), while the functions of log-sigmoid 

(logsig). The number of neurons in input and 

output layer are determined based on the 

number of key parameter and one predicted 

result (break size). To determine the number 

of neurons in each hidden layer, the traditional 

Trial-and-Error method was utilized by 

changing the number of neurons in the hidden 

layer and checking the values of the mean 

square error (𝑀𝑆𝐸) and the coefficient of 

determination (𝑅2) as defined below: 

𝑀𝑆𝐸 =
∑ (𝑦𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑖,𝑝𝑟𝑒𝑑)2

𝑖

𝑛
 (1) 

𝑅2 = 1 −
∑ (𝑦𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑖,𝑝𝑟𝑒𝑑)

2
𝑖

∑ (𝑦𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑚𝑒𝑎𝑛)
2

𝑖

 𝜖[0,1] (2) 

The database including 839 data points, 

after pre-processing is divided into three parts 

for training, testing and validation. The data 
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different break sizes are included in the training 

data. Fig. 4 depicts the division of the data into 

three separate parts. In the cases with break 

sizes of 50, 70, and 90 mm, the training data 

consists of only one point, the rest of the data 

corresponding to other uncertainties is divided 

into test and validation data. In this way, it is 

possible to check the interpolation and 

predictive ability of the ANN for uncertain 

cases. Each ANN configuration has it weights, 

and biases initialized using the Nguyen-Widrow 

method. To avoid overfitting, the ANN is 

trained with the Levenberg-Marquardt 

algorithm along with early stopping.  

 

IV. RESULTS AND DISCUSSION 

Table II. Comparison of different structures of hidden layers 

Structure of 

hidden layers 

Test data 

(R) 

Performance 

(MSE) 

Total number of 

weights and biases 

10-10 0.96221 1.24E-8 2541 

15-15 0.99237 3.89E-9 3886 

20-10 0.99485 4.34E-9 5061 

20-20 0.99560 7.81E-10 5281 

25-25 0.99141 9.84E-9 6726 

30-10 0.99278 6.75E-9 7581 

30-20 0.99672 2.15E-10 7901 

30-30 0.99386 4.89E-10 8221 

40-10 0.99424 2.32E-10 10101 

40-30 0.99347 8.74E-11 10941 

40-40 0.98972 5.93E-11 11361 

45-45 0.99065 8.89E-11 13006 

50-30 0.99265 5.67E-11 13661 

 

To find the optimal number of neurons in 

the hidden layers, each ANN structure is trained 

10 times with random initiated weights and 

biases, and then the averaged values of training 

performance and coefficient of determination of 

test data were obtained. Table II shown the 

comparison of different structures ANN. Three 

criteria are considered for choosing the optimal 

ANN structure: the training performance, the 

test error and the total number of weights and 

biases, which is used to evaluate the ANN size. 

Therefore, the structure (30-20) is chosen as the 

optimal structure, because it has the best 

accuracy at the test data as well as training 

performance and ANN size are also good.  

Fig. 5 shown a comparison of predicted 

results with target values, with the coefficients 

𝑅𝑡𝑟𝑎𝑖𝑛 = 1, 𝑅𝑡𝑒𝑠𝑡 = 0.99918, 𝑅𝑣𝑎𝑙 = 0.99941 

and 𝑅𝑎𝑙𝑙 = 0.99966. Most of the data points 

are in the 1:1 linear regression line, showing 

good capability to accurately predict by the 

ANN-based model.  

In the cases where there is no 

uncertainty in the training data (data points 

are 50, 70 and 90 mm), the prediction results 

are slightly biased, indicating that the ANN-

based model capable of relatively accurate 

identification even with uncertainty of input 

parameters added. 
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Fig. 5. Compare predictive and target results 

V. CONCLUSIONS 

This study has performed the construction 

of SB-LOCA fault simulation data with different 

break sizes at the cold-leg in a nuclear power 

plant using VVER-1000 technology. With 

simulated database, the authors have built an 

ANN-based model to identify the corresponding 

break size. The results showed that the accuracy 

of the ANN-based model, even when considering 

the uncertainty of the input data. This proves the 

great potential of the application of ANN in 

quickly identifying the break size in the LOCA. 
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