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Abstract: The accurate prediction of void fraction parameter in subcooled boiling flow is very 

important for nuclear safety since it has significant influences on the mass flow rate, the onset of two-

phase flow instability, and the heat transfer characteristics in a nuclear reactor core. Many different 

models and empirical correlations have been established over a variety of input conditions; however, 

this classical approach could lead to unsatisfactory prediction due to the uncertainties of model 

parameter and model forms. To cope with these limitations, Artificial Neural Network (ANN) is a 

powerful machine learning tool for modeling and solving non-linear and complicated physical 

problems. Therefore, this work is aim at developing an ANN-based model to predict the local void 

fraction of subcooled boiling flows. The comparison results of the performance between the ANN-

based model and empirical correlations for the void fraction prediction of subcooled boiling in vertical 

upward channel showed the potential use of ANN-based model in the Computational Fluid Dynamics 

(CFD) codes to accurately simulate the subcooled boiling phenomena. 
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I. INTRODUCTION 

Subcooled boiling flow have become 

challenging issues in safety analysis of water-

cooled nuclear power reactors since the 

physical-mechanisms of void growth and 

related thermal-hydraulic behaviors of system 

are still not fully understood. In particular, 

accurate prediction of void fraction parameter 

in subchannels under two-phase flow conditions 

is of great importance to the nuclear safety 

analysis. Thermal-hydraulic system codes and 

Computational Fluid Dynamic (CFD) solvers 

have been widely recognized as promising tools 

for dealing with the thermal-hydraulic 

phenomena simulating transients and accident 

scenarios in nuclear power plant. However, a 

lot of constitutive models and correlations are 

required to implement in these codes to make 

the conservation equations solvable. This 

classical approach could lead to unsatisfactory 

prediction due to the uncertainties of model 

parameter and model forms [1]. 

The Artificial Neural Network (ANN) is 

a powerful machine learning tool for modeling 

and solving non-linear and complicated 

physical problems, and it can be applied to 

overcome above-mentioned limitations. Many 

investiga-tors proposed ANN-based model to 

predict the void fraction, flow pattern, pressure 

drop and heat transfer coefficient, 

demonstrating the predictive capability of the 

model [2-5]. Currently, no research has been 
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conducted to check the performance and 

applicability of the ANN-based model and the 

empirical correlations for the subcooled 

boiling void fraction prediction problem in 

vertical upward channel. Therefore, in this 

study, comparison study is considered and 

investigated, proceeding to use the ANN-based 

model to replace the empirical correlations in 

the thermal-hydraulics codes. 

Nomenclature 

𝑏 Parameter defined in Eq. 10 

𝐶 Distribution parameter 

𝐶1, 𝐶2, 𝐶3 Parameter defined in Eq. 11 

𝑐𝑝 Specific heat at constant pressure 

𝐷ℎ Hydraulic diameter 

𝑓 Fitness function 

𝐺 Mass flux 

𝑔 Gravity 

ℎ Enthalpy 

ℎ𝑓𝑔 Laten heat of vaporization 

𝑘 Thermal conductivity 

𝑀𝐴𝐸 Mean Absolute Error 

𝑀𝑆𝐸 Mean Square Error 

𝑛 Number of datapoints 

𝑁𝑊𝐵 Number of weights and biases 

𝑃𝑒 Peclet number  

𝑃𝑟 Prandtl number 

𝑝 Pressure 

𝑞′′  Heat flux 

𝑅𝑒 Reynolds number 

𝑅2 Coefficient of determination 

𝑅𝑐𝑟 Crossover rate 

𝑅𝑚𝑡 Mutation rate 

𝑆 Slip ratio 

𝑇 Temperature 

𝑢 Velocity 

𝑢∗ Parameter defined in … 

𝑢𝑔𝑗 Drift velocity 

𝑧 Distance from tube inlet 

Greek symbols 

𝛼 Void fraction 

𝜇 Viscosity 

𝜌 Density 

𝜎 Surface tension 

𝜒 Flow quality 

𝜒𝑒 Thermodynamic equilibrium 

quality 

Subscripts 

𝑒𝑥𝑝 Experimental (measured) 

𝑓 Liquid 

𝑔 Vapor/gas 

𝐻 Homogenous model 

𝑖𝑛 Inlet 

𝑛𝑣𝑔 Net vapor generation 

𝑝𝑟𝑒𝑑 Predicted 

𝑠𝑎𝑡 Saturated 

𝑠𝑢𝑏 Subcooling 

𝑡𝑟𝑎𝑖𝑛 Training data 

𝑡𝑒𝑠𝑡 Testing data 
  

II. FUNDAMENTALS AND 

EXPERIMENTS OF SUBCOOLED 

BOILING FLOW 

A. Void fraction in subcooled boiling flow 

Knowledge of void fraction in 

subcooled flow boiling is of considerable 

practical importance because it is 

indispensable to the prediction of several 

other two-phase parameters, such as 

thermophysical properties, pressure drops 
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heat transfer coefficient, and critical heat 

flux. Moreover, void fraction plays a crucial 

role when characterizing flow regime 

transitions in subcooled flow boiling [6]. 

Subcooled boiling flow is influenced by 

several factors, including inlet pressure, inlet 

subcooling, mass flux, heat flux, flow 

orientation, tube shape and hydraulic 

diameter as well as thermophysical properties 

of the working fluid. The lack of 

thermodynamic equilibrium between the 

vapor and liquid phases is the main reason 

which causes great difficulty of modeling 

interfacial behavior and predicting void 

fraction in subcooled boiling.  

Subcooled boiling flow is initiated 

with a single-phase liquid region at the inlet 

wherein the mean liquid temperature 

increases gradually in the axial direction in 

response to an applied heat flux. Using the 

commonly adopted assumption of 

thermodynamic equilibrium, vapor is 

postulated to begin forming at the axial 

location from the inlet corresponding to zero 

thermodynamic equilibrium quality (𝜒𝑒). 

However, in practical terms, the vapor will 

begin forming upstream of this location 

despite the bulk liquid remaining below 

saturation temperature, provided the wall 

temperature sufficiently exceeds the 

saturation temperature to permit vapor 

formation at the wall. The location where the 

first bubbles appear is the point of Onset of 

Nucleate Boiling (ONB), but, in highly 

subcooled boiling, the region immediately 

following ONB does not contribute any 

appreciable increase in vapor void fraction, 

given that bubbles in this region are 

subjected to a high degree of condensation. 

Farther downstream, as the bulk liquid 

temperature continues to rise to saturation 

temperature, which weakens the 

condensation effects, causing the wall 

bubbles to grow bigger and begin departing 

into the bulk flow, thereby allowing for a 

significant increase in void fraction. The 

axial location where the void fraction begins 

to incur such an increase is referred to as 

point of Net Vapor Generation (NVG). A 

common demarcation of subcooled boiling 

flow region is: (i) single-phase liquid region 

upstream of the location of ONB, (ii) two-

phase highly subcooled region between the 

axial locations of ONB and NVG, (iii) 

slightly subcooled region between the axial 

locations of NVG and 𝜒𝑒 = 0, and (iv) 

saturated boiling region beginning at the 

location of 𝜒𝑒 = 0. Clearly, the void fraction 

trend varies greatly among these regions.  

B. Consolidated database for subcooled 

boiling in vertical upward channel 

Due to the complexity of the 

phenomena, the experimental studies have 

been the main research approach to develop 

empirical correlations and models which 

provide the engineers and designers suitable 

choice in engineering practice. In this study, 

the experiment data of void fraction 

distribution performed by previous studies [7-

17] in cylindrical and annular vertical 

channels were used to assess the correctness 

accuracy of typical empirical correlations and 

the ANN-based model. The collected 

database including 308 cases (a total of 2016 

data points) are listed in Table I with main 

parameters such as hydraulic diameter (𝐷ℎ), 

heating section length (𝐿ℎ𝑒𝑎𝑡𝑒𝑑), uniform heat 

flux (𝑞′′), inlet pressure (𝑝𝑖𝑛), inlet 

subcooling (∆𝑇𝑠𝑢𝑏,𝑖𝑛), and mass flux (𝐺). 
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Table I. The database of subcooled boiling in vertical upward channels 

Author(s) 
𝐷ℎ 

(𝑚𝑚) 

𝐿ℎ𝑒𝑎𝑡𝑒𝑑 

(𝑚) 

𝑞′′ 

(𝑘𝑊/𝑚2) 

𝐺 

(𝑘𝑔/𝑚2 − 𝑠) 

∆𝑇𝑠𝑢𝑏,𝑖𝑛 

(𝐾) 

𝑝𝑖𝑛 

(𝑏𝑎𝑟) 

Ferrell (1964) [7] 11.84 2.44 230 – 682 134 – 1785 28 – 126  4 – 17 

Rouhani (1966) [8] 13.00 1.09 600 – 1220  121 – 1445  6 – 150  9 – 50  

Zeitoun (1994) [9] 12.70 0.30 207 – 705  139 – 412  12 – 31  1 – 1.7  

Devkin (1998) [10] 10 – 12 0.4 – 1.5 132 – 2210 126 – 2123 4 – 171  11 – 150  

Situ et al (2004) [11] 19.1 1.73 98 – 151  475 – 1181 8 – 13  1.26 – 1.36  

Lee et al (2009) [12] 19.1 1.73 50 – 193 481 – 1939  8 – 15  1.32 – 1.48  

SUBO (2010) [13,14] 25.52 3.1 364 – 568  1104 – 2129  17 – 30 1.8 – 2.0 

Lee et al (2012) [15] 18.5 1.61 133 – 320 476 – 1061  12 – 21 1.15 – 1.6  

Ozar et al (2013) [16] 19.1 2.8 109 – 241  445 – 1844  10 – 28 2.2 – 9.5  

Brooks et al (2014) [17] 19.1 2.85 241 – 264 933 – 957  13 – 15  3.3 – 5.0 

Overall 11.84 – 25.52 0.3 – 3.1 50 – 2210 121 – 2129 4 – 171 1 - 150 

 

III. PREDICTIVE METHODS FOR  

VOID FRACTION IN SUBCOOLED 

BOILING FLOW 

A. Predictive method using empirical correlations 

Due to the complexity in treating thermo-

dynamic non-equilibrium effects, prediction of 

void fraction in a purely theoretical manner is a 

formidable challenge. Therefore, most published 

void fraction relations follow purely empirical or 

semi-empirical formulations, relying heavily on 

idealizations of underlying interfacial behavior 

and fitting of empirical coefficients. The use of 

empirical correlations is very complex and 

requires the application of many different 

formulas. This section presents typical models 

often used in the problem of predicting the void 

fraction of subcooled boiling flows. All 

thermophysical properties of the working fluids 

are obtained from NIST’s REFPROP software. 

The calculation process of void fraction is 

proposed by Cai et al. (2021) [6], including the 

steps below. 

(1) Input the inlet condition parameters, 

such as 𝑝𝑖𝑛, 𝐷ℎ, 𝐺, ∆𝑇𝑠𝑢𝑏,𝑖𝑛 and 𝑞′′, and then 

calculate the axial distribution of thermodynamic 

equilibrium quality 𝜒𝑒, using Eq. (1). 

(2) Calculate thermodynamic equilibrium 

quality at the NVG point 𝜒𝑒,𝑛𝑣𝑔, using the 

different correlations. If the calculated 𝜒𝑒,𝑛𝑣𝑔 is 

less than 𝜒𝑒,𝑖𝑛, 𝜒𝑒,𝑛𝑣𝑔 is substituted by the 

value of 𝜒𝑒,𝑖𝑛. 

(3) Calculate the axial distribution of 

vapor quality 𝜒 which is a function of both 

𝜒𝑒,𝑛𝑣𝑔 and 𝜒𝑒, using the different correlations. 

(4) Calculate the axial distribution of 

void fraction 𝛼, using the different correlations.  

 A useful reference for exploring two-

phase behavior in subcooled boiling is local 

thermodynamic equilibrium quality, which is 

defined as Eq. (1). In a uniformly heated 

vertical channel, this parameter can be 

calculated using a simple energy balance. 

 
𝜒𝑒 =

ℎ − ℎ𝑓,𝑠𝑎𝑡

ℎ𝑓𝑔

=

4𝑞′′𝑧
𝐺𝐷ℎ

+ ℎ𝑖𝑛 − ℎ𝑓,𝑠𝑎𝑡 

ℎ𝑓𝑔
 

(1) 

 Where ℎ𝑖𝑛, 𝑞′′, 𝐺, 𝐷ℎ and 𝑧 are, 

respectively, the liquid inlet enthalpy, wall 

heat flux, mass flux, hydraulic diameter, and 

axial distance from the inlet. 
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 Following the mechanisms of bubble 

departure and bubble ejection form the heated 

wall, Dix (1971) [18] proposed a mechanism 

relating the occurrence of the NVG point, 

indicating that this is the location where there is 

a high probability of bubble leaving the wall, 

leading to an increase in significant of void 

fraction parameter. Therefore, research models 

aimed at predicting the position of the NVG 

point as well as determining the corresponding 

𝜒𝑒 = 𝜒(𝑒,𝑛𝑣𝑔), which is of great important in 

predicting the void fraction. In this study, two 

empirical correlations of NVG point are the 

models of Saha and Zuber (1974) [19] and Ha 

et al. (2020) [20] used to calculate 𝜒𝑒,𝑛𝑣𝑔. 

Saha and Zuber (1974) [19] 

𝜒𝑒,𝑛𝑣𝑔

=

{
 
 

 
 −0.0022

𝑞′′𝑐𝑝𝑓𝐷ℎ

ℎ𝑓𝑔𝑘𝑓
, 𝑃𝑒 < 70000

−153.85
𝑞′′

ℎ𝑓𝑔𝐺
     , 𝑃𝑒 ≥ 70000

 

𝑃𝑒 =  
𝐺. 𝐷ℎ. 𝑐𝑝𝑓

𝑘𝑓
 

(2) 

Ha et al. (2020) [20] 

𝜒𝑒.𝑛𝑣𝑔

=

{
 
 

 
 −

𝑞′′𝑐𝑝𝑓𝐷ℎ

ℎ𝑓𝑔𝑘𝑓
[0.0901 − 0.0893exp (−

158

𝑃𝑒
)] , 𝑢∗ ≤ 1.3

−
𝑞′′𝑐𝑝𝑓𝐷ℎ

ℎ𝑓𝑔𝑘𝑓

𝑅𝑒−0.77𝑃𝑟−1.35 

0.0959
                                 , 𝑢∗ > 1.3

 

𝑢∗ =
𝐺

1.53𝜌𝑓
[

𝜌𝑓
2

𝑔𝜎(𝜌𝑓 − 𝜌𝑔)
]

0.25

 

(3) 

In calculating vapor quality 𝜒, the 

method of Saha and Zuber (1974) [19] has been 

shown to yield physically acceptable values 

across broad ranges of conditions. Therefore, 

Saha & Zuber's model (Eq. 4) is selected for 

ultimate calculation of the void fraction. 

 
𝜒

=
𝜒𝑒 − 𝜒𝑒,𝑛𝑣𝑔 exp(𝜒𝑒 𝜒𝑒,𝑛𝑣𝑔 − 1⁄ )

1 − 𝜒𝑒,𝑛𝑣𝑔 exp(𝜒𝑒 𝜒𝑒,𝑛𝑣𝑔 − 1⁄ )
 (4) 

The paper includes three categories of 

void fraction prediction methods: (1) 

homogeneous flow model (HM), (2) slip ratio 

model, (3) drift-flux model. Combining the 

definitions of void fraction and vapor quality 

yields the following relation for one-

dimensional (slip) two-phase flow: 

 
𝛼 =

1

1 + 𝑆
1 − 𝜒
𝜒

𝜌𝑔
𝜌𝑓

 
(5) 

 Where the slip ratio 𝑆 = 𝑢𝑔 𝑢𝑓⁄  is the 

ratio between the vapor and liquid velocity. Eq. 

(5) can be simplified in a HM model where 𝑆 =

1. 

 
𝛼𝐻 =

1

1 +
1 − 𝜒
𝜒

𝜌𝑔
𝜌𝑓

 
(6) 

In this study, the slip ratio model of 

Ahmad (1970) [21] and Cai et al (2021) [6] are 

used to calculate void fraction.  

Ahmad (1970) [21] 

 

𝛼

=
1

1 +
1 − 𝜒
𝜒 (

𝐺𝐷ℎ
𝜇𝑓

)
−0.016

(
𝜌𝑔
𝜌𝑓
)
0.795 (7) 

Cai et al. (2021) [6] 

 
𝛼 =

1

1 +
1 − 𝜒
𝜒 (

𝜌𝑔
𝜌𝑓
)
0.7988 

(8) 

Zuber and Findlay (1965) [22] proposed 

general framework for the drift-flux model to 

determine void fraction according to the 

relation Eq. (9) 

 𝛼 =
𝜒

𝐶 [𝜒 +
𝜌𝑔
𝜌𝑓
(1 − 𝜒)] +

𝜌𝑔𝑢𝑔𝑗
𝐺

 
(9) 
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 Where 𝐶 is termed distribution parameter 

and 𝑢𝑔𝑗 is drift velocity, which can be 

determined through various correlations. In this 

study, the drift-flux model of Dix (1971) [18] is 

utilized, detailed in Eq. (10). 

𝐶 =
𝜒𝜌𝑓

𝜒𝜌𝑓 + (1 − 𝜒)𝜌𝑔
[1 +

(1 − 𝜒)𝜌𝑔

𝜒𝜌𝑓
]

𝑏

 

𝑏 = (
𝜌𝑓

𝜌𝑔
)

0.1

 

𝑢𝑔𝑗 = 2.9 [
𝑔𝜎(𝜌𝑓 − 𝜌𝑔)

𝜌𝑓
2 ]

0.25

 

(10) 

B. Predictive method using ANN-based model 

With ANN approach, experimental 

databases are used in the training process in 

which the weights and biases are modified to 

attain better approximation of the desired 

output. The subcooled boiling flow 

phenomena are primarily governed by the 

flow boundary conditions as well as the 

geometry of the flow domain, therefore these 

key parameters must be selected as inputs for 

ANN structure design and optimization. 

The input parameters of ANN for prediction 

of two-phase flow parameters can be chosen 

based on general understanding and 

conventional empirical correlations [23]. 

Fundamentally, the prediction of void 

fraction was based on the drift-flux model, 

in which the liquid superficial velocity, gas 

superficial velocity, hydraulic diameter of 

channel, and pressure were generally 

considered as the related correlating 

parameters [24]. Therefore, Five key 

parameters of flow boundary conditions 

including hydraulic diameter (𝐷ℎ), mass 

flux (𝐺), heat flux (𝑞′′), inlet subcooling 

∆𝑇𝑠𝑢𝑏,𝑖𝑛, and inlet pressure (𝑝𝑖𝑛) are chosen 

as input variables of ANN. Additionally, 

one variable indicating the location of 

measured points are the axial length (𝐿/𝐷ℎ: 

the ratio between the flow length from the 

inlet of heated section 𝐿 and the hydraulic 

diameter 𝐷ℎ) is also chosen as input of 

ANN structure. 

 

Fig. 1. Structure of ANN-based model

Input 

Layer

Hidden

Layer 1

Hidden 

Layer 2

Output 

Layer

Inputs

Output

... ...
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The type of ANN used in this work is 

the multilayer feedforward net, including one 

input layer, one output layer, and two hidden 

layers (Fig. 1). The number of neurons in 

input and output layer are determined based 

on six input parameters and one predicted 

parameter (void fraction). To determine the 

number of neurons in each hidden layer, the 

Genetic Algorithm (GA) is utilized to 

optimize the ANN structure [24]. To apply 

GA for ANN structural optimization, each 

ANN structure (the number of neurons at 

each hidden layer) is considered as an 

individual with corresponding chromosome 

made up of many genes which are represented 

using a string with binary values (string of 1s 

and 0s). This study adopted chromosome 

coding scheme proposed by Benardos and 

Vosniakos (2007) [25] with a 2x6 bits binary 

chromosome in which the first and second 

group of 6 bits correspond to number neurons 

in the first and second hidden layer, 

respectively (see Fig. 2). The population size, 

number of generations, crossover rate and 

mutation rate are important control 

parameters which directly influence the 

ability to search an optimum solution in 

Genetic Algorithm. The control parameters 

used in this study are presented in Table II 

based on a comprehensive survey. 

 

Fig. 2. An example of the coding scheme of 12-bit chromosome 

Table II. The control parameters used in GA 

Population 

sizes 

Number of 

generations 

Crossover 

rate 

Mutation 

rate 

30 10 90% 5% 

With ANN structural optimization 

framework [24] using GA, a population with 

thirty different ANN structures (individuals) is 

randomly initialized and these structures are 

trained in turn on the same database with the 

same training conditions. During training 

process, the fitness values (Eq. 11) will be 

calculated based on the method of Nguyen and 

Nguyen (2022) [24], and the corresponding 

weights and biases are saved. After the end of 

each generation, the selection of better 

individuals will be decided on the smaller 

fitness value. Two good individuals are 

randomly selected for crossover to produce two 

offspring with the crossover rate Rcr = 0.9, and 

the mutation rate Rmt = 0.05. Two offspring 

were assessed for fitness values and replaced 

less well-adapted individuals in the population. 

The GA process ends when all ten generations 

have been completed and the best individual in 

each generation are compared to select the final 

one. The GA process are then repeated several 

times to produce the best individual in each 

process and the second round of selection will 

be done based on smallest fitness value. 

𝑓 = 𝑒0.005×𝑁𝑊𝐵 × (1 + 0.33𝐶1 + 𝐶2 + 𝐶3) 

×
𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛𝑛𝑡𝑟𝑎𝑖𝑛 +𝑀𝑆𝐸𝑡𝑒𝑠𝑡𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡
 

(11) 

 Where NWB is the total number of 

weights and biases, C1, C2 is the number of 

test cases where the absolute value of relative 
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error is in the internal [15,25], [25,∞], 

respectively. C3 is the number of test case 

where the value of predicted result lying 

outside the range of target value. In 

optimization process, the predicted results by 

the ANN-based model are compared with 

target value through mean square error (MSE) 

(Eq. 12). 

 

𝑀𝑆𝐸 =
∑ (𝛼𝑖,𝑝𝑟𝑒𝑑 − 𝛼𝑖,𝑒𝑥𝑝)

2
𝑖

𝑛
  

(12) 

 Where 𝛼𝑖,𝑝𝑟𝑒𝑑 and 𝛼𝑖,𝑒𝑥𝑝 are, 

respectively, predicted, and measured values, 𝑛 

is a total of data points.  

The database including 2016 data 

points, after pre-processing is divided into 

three parts: 70% is used for training, 20% is 

used for testing and 10% for validation [24]. 

Each ANN configuration has its weights and 

biases initialized using the Nguyen-Widrow 

method. To avoid overfitting, the ANN is 

trained with the Levenberg-Marquardt along 

with early stopping.  

After the optimization process, the 

best ANN is used to predict void fraction 

parameter based on six input parameters. In 

other works, the ANN has constructed a 

model, in which void fraction is a function 

of six input variables through the matrixes of 

weight and bias. 

IV. RESULTS AND DISCUSSION 

The results calculated by the ANN-based 

model and the empirical correlations are 

compared with the corresponding measured 

values through the Mean Absolute Error 

(MAE) defined by Eq (13). The MAE values of 

the models used in the study are presented in 

Table II. Fig. 3 shows the comparison between 

the values predicted by several models with 

the experimental measurements. In addition, 

the coefficient of determination (𝑅2) is used 

to evaluate the linear regression of the ANN-

based model, whereby the closer the value of 

R is to 1, the more predictive the model is 

good. The correlation coefficient 𝑅2 (Eq. 14) 

is determined on the test data set (𝑅𝑡𝑒𝑠𝑡) to 

evaluate the generality of the model and on 

the all-data (𝑅𝑎𝑙𝑙) to evaluate the predictive 

ability of the model over all-data. The 

results are presented in Fig. 4.  

 
𝑀𝐴𝐸 =

1

𝑛
 ∑ |𝛼𝑖,𝑝𝑟𝑒𝑑

𝑖

− 𝛼𝑖,𝑒𝑥𝑝| 
(13) 

 
𝑅2

= 1 −
∑ (𝛼𝑖,𝑝𝑟𝑒𝑑 − 𝛼𝑖,𝑒𝑥𝑝)

2
𝑖

∑ (𝛼𝑖,𝑒𝑥𝑝 − 𝛼𝑚𝑒𝑎𝑛)
2

𝑖

 (14) 

It can be seen in Table III that the void 

fraction prediction model of Cai et al (2021) [6] 

gives the most accuracy among the investigated 

correlations, this has also been shown in the 

author's research [6]. Besides, the use of the 

model of Saha and Zuber (1974) [19] to 

calculate the thermodynamic equilibrium quality 

at the NVG point is more effective than to use 

the model of Ha et al (2020) [20]. Most of the 

above empirical correlation models can predict 

relatively accurately for the data set of Ferrell 

(1964) [7] and Devkin (1998) [10] because these 

are common data sets, often used to develop the 

above correlation models. For other data, there 

exists a significant difference when using 

empirical correlations for prediction. Especially, 

in the low range of void fractions, the inaccurate 

prediction results show the limitation of using 

empirical correlation models. 
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Fig. 3. Comparison of experimental data with predicted results

Based on the value of the MAE as well 

as the comparison results presented in Fig. 3, it 

can be easily seen that the predictive 

performance of the ANN-based model is 

superior to the above empirical correlation 

models. The ANN-based model also overcomes 

the limitation in predicting low void fraction 

values. That demonstrates the potential of using 

ANN-based model to replace previous 

traditional empirical correlations. 

At high pressure ranges and/or inlet 

subcooling, the void fraction along the 

chanel is very complicated. In this work, 

the distribution of experimental data 

according to inlet pressure and inlet 

subcooling is presented in Fig. 5. Due to 

limited experimental data available in 

previous publications, especially data in the 

high pressure ranges so the database used in 

this study is mainly in the low pressure 

range from 1 to 10 bar. The number of data 

points is concentrated mainly in the inlet 

subcooling range from 10 to 30 K. The 

performance of ANN-based model depends 

not only on the availability of the 

databases, but also on the concentration of 

data points in each input parameter 

[23].Therefore, the ANN-based model 

developed in this study will work 

efficiently in the low pressure range (1-10 

bar) and inlet subcooling range from 10 to 

30 K. 
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Fig. 4. Comparison of experimental data with predicted results for test data  

and all-data (ANN-based model) 

Table III. Mean absolute errors of 8 empirical correlation models and ANN-based model against experimental data 

Author(s) Overall, 

MAE 

Ferrell 

1964 

Rouhani 

1966 

Zeitoun 

1994 

Devkin 

1998 

Situ 

2004 

Lee 

2009 

SUBO 

2010 

Lee 

2012 

Ozar 

2013 

Brooks 

2014 𝝌𝒆,𝒏𝒗𝒈 𝜶 

Saha&Zuber HM 0.473 0.394 0.497 0.737 0.134 0.526 0.433 0.712 0.879 0.725 0.770 

Saha&Zuber Ahmad 0.375 0.312 0.523 0.605 0.078 0.317 0.240 0.569 0.763 0.600 0.625 

Saha&Zuber Dix 0.369 0.316 0.507 0.593 0.057 0.339 0.266 0.600 0.800 0.612 0.650 

Saha&Zuber Cai 0.364 0.309 0.494 0.589 0.071 0.293 0.218 0.545 0.742 0.576 0.598 

Ha HM 0.485 0.385 0.626 0.769 0.155 0.548 0.473 0.697 0.869 0.725 0.759 

Ha  Ahmad 0.387 0.299 0.527 0.639 0.097 0.357 0.274 0.558 0.741 0.599 0.613 

Ha  Dix 0.380 0.302 0512 0.628 0.075 0.387 0.303 0.589 0.779 0.612 0.636 

Ha  Cai 0.375 0.295 0.499 0.623 0.087 0.337 0.251 0.535 0.719 0.574 0.585 

ANN-based model 0.020 0.027 0.013 0.020 0.012 0.016 0.021 0.017 0.019 0.034 0.036 

 

 
Fig. 5. The distribution of experimental data according to inlet pressure and inlet subcooling 
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V. CONCLUSIONS 

The study conducted to collect 

experimental data on subcooled boiling flow, 

for investigation, and verification different 

empirical correlations to predict void fraction of 

subcooled boiling flow in vertical upward 

channel. Besides, the research also proposes the 

use of data-driven model based on ANN, which 

provides better predictive performance than 

empirical correlations. The results clearly show 

the possibility that the ANN-based model can 

be used in predicting the parameters of the two-

phase flows. The study is the first step to build 

the ANN-based model to replace mathematical 

models implemented in CFD codes. 
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