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Abstract: The article presents the multipole expansion for the electron-nucleus scattering cross-

section at high energies within framework of the unified electroweak theory. The electroweak currents 

of  the nucleus is expanded into simple components with definite angular momentum, which are called 

the multipole form factors. The multipole expansion of the cross-section is a consequence of the above 

expansion. Besides the familiar electromagnetic form factors 
X

LF , there are new form factors 
X

LV  

and 
X

LA  related to weak interactions, corresponding to the vector and axial weak currents. The 

obtained general expressions are applied to the nucleus 
6

3 Li , where the partial form factors are 

computed in the multiparticle shell model. 

I. INTRODUCTION 

The method of studying the nuclear 

structure by electron scattering, or more 

generally, lepton scattering, is highly effective 

because it provides most detailed results about 

the inner structure of the nuclei, especially 

when the attained electron energy becomes 

more and more higher. 

In order to relate the structure of the 

nucleus with the scattered electrons, the best 

way is to expand the scattering amplitude into 

multipole components, each term corresponds 

to a definite angular momentum Lm (of the 

interaction carrier). Weigert and Rose [1] were 

the first to perform a complete expansion when 

the interaction is purely electromagnetic, and 

the expansion was improved afterwards by 

Donnelly and Raskin [2]. Owing to this 

expansion, every partial amplitude 

corresponding to each multipole can be 

calculated in details for nuclei, and they clarify 

many properties of the nuclei.  

At high energies that the electron 

accelerators reached at present, of order GeV, 

the electron-nucleus scattering must be 

described by the unified electroweak theory. 

We shall extent the Weigert-Rose method to 

expand the scattering amplitude in this case. 

For simplicity, we consider only the scattering 

in which the nuclei are unoriented and the 

electrons are unpolarized. 

II. THE ELECTRON-NUCLEUS 

SCATTERING AT HIGH ENERGIES 

We shall consider the scattering of 

electrons at high energies, of order GeV, on the 

nuclei. In order to apply the Born 

approximation, the target nuclei are supposed 

to be light or medium, i.e. they have the charge 

number Z which is fairly less than 1/ = 137. 

At this energy scale, in the scattering the 

electron exchanges a photon  and an 

intermediate boson Z0 with the nucleus, the 

scattering amplitude is of the form:  
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4
( ) ( ) ( )fi F V A ZM u uJ Q u g g uJ Q

Q

 

 


     = + + 

(1) 

where u is the (spinor) state amplitude of the 

electron, Q is the 4-momentum transfer of 

electron (to nucleus), Q = K – K' = (, q), K = 

(, k) and K' = (', k') are the 4-momenta of the 

electron before and after scattering 

respectively, ( )FJ Q
 is the electromagnetic 

current and ( )ZJ Q
 is the weak current of the 

nucleus, 

( )

2 2

2 2 216 cosZ W

g Q

m Q


 
 −

−
,   

g is the weak interaction constant, W is the 

Weinberg angle. In the Weinberg-Salam model 

gV = - 1/2 + 2xW, gA = - 1/2, xW  sin2W. 

The scattering cross section of the 

process is defined by:          

2 2
2

4

4

4

e
fi

if

m
M R

f f Q

  


 

−−− 
= = ,           (2) 

where the summation 
( ) ( )if if L if H

−−− −−− −−−

=   imply 

the average over the initial spin projection 

states and the summation over the final spin 

projection states, which are performed for both 

lepton (L) and nucleus (H), and we call briefly 

the summation. After the summation we obtain 

the results for the expression after the second 

equality in (2) as follows [3, 4]: 

R  =  RF + RFZ + RZ,                           (3) 

F FR L H

= ,  
( )

F F F

if H

H J J  
−−−

          (4a)                                                       

( )1 1conj. 2 ReFZ FZ FZR L H L H 

  = + = ,

( )

FZ F Z

if H

H J J  
−−−

  ,                                (4b) 

2 2

Z ZR L H

= ,
( )

Z Z Z

if H

H J J  
−−−

  .   (4c)                                                      

The quantities 
1 2, ,L L L    are called 

the lepton tensors, and , ,F FZ ZH H H  
 are 

nuclear tensors, which are also called the 

hadron tensors when considering the hadrons 

instead of nuclei. We see that the quantities RF, 

RFZ, RZ are the contraction products of a lepton 

tensor with a nuclear tensor. After performing 

the summation over lepton states
( )

,
if L

−−−

  we 

obtain:         

( )( ) ( )( )5 5
ˆ ˆˆ ˆSp 1 1e eL S m K S m K       = + + + +

 
(5a) 

( )( ) ( )( )( )1

5 5 5
ˆ ˆˆ ˆSp 1 1e V A eL S m K g g S m K        = + + + + +

 

=  gV L + Ag L
 ,                                       (5b) 

( )( ) ( )( )5 5
ˆ ˆˆ ˆSp 1 e eL S m K S m K        = + + + +

 
,  (5c) 

( )( ) ( )

( )( )( )

5 5
2

5 5

ˆ ˆ1
Sp

ˆ ˆ1

e V A

e V A

S m K g g
L

S m K g g

 



   

 

  + + +
 =
 
 + + −  

    

        =  ( )2 2 2V A V Ag g L g g L 
+ + .         (5d) 

Thus there remains the summation over nuclear 

states 
( )

,
if H

−−−

 which we shall perform in the 

following. 

III. MULTIPOLE EXPANSION FOR THE 

SCATTERING CROSS SECTION 

Our multipole expansion for RF 

essentially concides with the results of Weigert 

and Rose [1], but there are some changes for 

being compatible with high energies [4]. At 

energies of order GeV, the contribution of RFZ 

is of several percents from RF, and the 

contribution from RZ is of the same order 

compared to RFZ, so RZ can be neglected.  

We employ a Cartesian coordinate 

system with the following unit vectors: 
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ez = q, ey = kk', ex = (kk')q,  where  a  

a/|a|, 

i.e. the OZ axis is along the direction of the 

momentum transfer q, the OX axis lies on the 

scattering plane, and the OY axis is 

perpendicular to this plane. The axis along q is 

called longitudinal, two other axes are 

transverse. The next step is to change to the 

cyclic coordinate system 

0ζ   =  ez ,  1ζ   =  -
2

1
( ex + iey),   

and we shall expand the electromagnetic and 

weak currents of the nucleus into multipoles in 

this cyclic system 

( ) 4 (2 1) ( )C

Lm

Lm

L T q = +q ,       

( ) 4 (2 1) ( )p

Lm p

Lmp

L T q = +J q ζ , (p = 0, 1), (6)  

The coefficient 
C

LmT  is the Coulomb 

component of the expansion, three other 

coefficients 
p

LmT (p = 0, 1) are composed of 

0 ,LmT  also denoted by 
||

LmT , which is called the 

longitudinal component, and two coefficients 
1

LmT 
 corresponding to the transverse 

components, which can be written as 

1 ( )/ 2E M

Lm Lm LmT T T  −  , where 
E

LmT  is the 

electric component and 
M

LmT  is the magnetic 

ones. The inverse expressions of (6) are 

3( ) ( ) ( , )C L C

Lm LmT q i B q d=  r r r ,         

|| 1 || 3( ) ( ). ( , )L

Lm LmT q i q d−=  J r B r r , 

1 3( ) ( ). ( , )E L E

Lm LmT q i q d+=  J r B r r , 

3( ) ( ). ( , )M L M

Lm LmT q i q d=  J r B r r ,         (7) 

where 
C

LmB , 
||

LmB ,
E

LmB  and 
M

LmB  are the basic 

multipole fields (of a vector field) [5], of the 

Coulomb, longitudinal, electric and magnetic 

types respectively.  

We rewrite here the general form of the 

structure of the electromagnetic and weak 

currents in the unified theory [6]: 

00 10FJ V V  = + ,                           (8a) 

ZJ 
= V + A,  

(0) (1)

00 10V VV V V   = + , 

(0) (1)

00 10A AA A A   = + ,                (8b) 

where V is the vector weak current, A is the 

pseudovector weak current, which is also 

called the  axial (weak) current, two subscripts 

at V và A in (8a) and (8b) express the isospin 

(0 and 1) together with their principal 

projections. In the Weinberg-Salam model we 

have 
(0)

V = - 2xW, 
(1)

V = 1 - 2xW, 
(0)

A = 0, 

(1)

A = 1. Thus the expansions (6) and (7) 

correspond to three currents: when J = FJ 
 

then 
X X

Lm LmT F= , when J = ZJ 
 then 

X X

Lm LmT Z=  (Z is V or A). 

Note that in quantum theory, the currents 

are operators, so the expressions (6) and (7) in 

fact are operators. For computing the scattering 

cross section, we need to compute first the 

transition amplitude of the current (6), or 

equivalently, of their multipole components 

(7), between the initial |i  |JM and final |f  

|J'M' states, i.e. the expressions 

ˆJ M J JM   or ˆ X
LmJ M T JM  . On the 

other hand, ˆ X
LmF  is a spherical tensor, or a 

multipole tensor, of the order Lm, so according 

to the Wigner-Eckart theorem in quantum 

mechanics, the angular momentum projection 

quantum numbers M, m, M' are gathered 
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together into a Clebsch-Gordan coefficient, and 

the remaining factor will not contain them: 

,
ˆ ˆ|| ||X J M X

Lm JM Lm LJ M T JM C J T J
   = .  (9) 

The factor ˆ|| ||X

LJ T J  is called the reduced 

(multipole) matrix element and will be denoted 

by ˆ|| ||X X

L LT J T J , with T = F, V, A and X 

= C, ||, E, M. The quantities , ,X X X

L L LF V A  are 

also called electromagnetic, vector and axial 

multipole form factors respectively. 

Since the currents FJ 
 and V are 

conserved, so they satisfy the continuity 

equation 

          div 0
t


+ =


J .                 (10) 

From it we derive that the longitudinal 

component is expressed in terms of the scalar 

(Coulomb) component 

          || ||,C C

Lm Lm Lm LmF F V V
q q

 
= = .      (11) 

The axial current is not conserved and 

does not satisfy the equation (10), so there is 

not the relation like (11) for it.  

Now we compute RFZ. First of all it is 

easy to obtain [4]: 

( )1 4 V AL g X g Y  = + ,            (12) 

21

2
X K K K K g Q     

 = + + ,   

Y i K K 

  = .                       (13) 

Next, we compute the contraction product 



( ) ( )( )

|| ||

||

( )

|| || 2 2

||

1
2 . 2 . .

2

FZ C F Z F Z

if H

t t t t

C F Z F Z F Z F Z

X H u u J J

u J J x



  

  

 

   

= + +

+ + +



J J k J k J

                      

|| ||

|| ||

( ) ( . ) ( . )

( ) ( . ) ( . )

t t

F Z F Z

t t

F Z F Zk k J

   



 

 

  − + + 

  − + + 

k J k J

k J k J
 , (14a) 

      

( ) ( ) ( ) ( )
( )

. .FZ F Z F Z F Z

if H

Y H i

         =  − + − 
  k k J J k k J J

(14b) 

Putting K  4 (2J' + 1)/(2J + 1) and using (6) 

we shall obtain for 9 terms which are present in 

(14a, b): 

( )

Re C C

F Z L L

if H L

K F V  =  ,

|| || || ||

( )

Re F Z L L

if H L

J J K F V =  ,     

( ) ( )|| || || ||

( )

Re C C

F Z F Z L L L L

if H L

J J K F V F V  + = + 

( )
( )

Re .t t E E M M

F Z L L L L

if H L

K F V F V = + J J ,               

( )( ) ( )2

( )

1
Re . .

2

t t E E M M

F Z t L L L L

if H L

Kk F V F V = + k J k J

               

( ) ( ) ( )
( )

.Im E M M E

F Z T L L L L

if H L

Ku F A F A    − −  = + k k J J  (15)  

The remaining three terms give the 

expansions equal to zero. 

The results of calculation are  

          RFZ  =  8(gVB1 + gAB2),       (16) 

          

( )

( )

|| || || ||

1 || ||

1

2

C C C C

C L L L L C L L L L

L

E E M M

T L L L L

B K u F V u F V u F V F V

u F V F V

= + + +


+ +




= ( )C C E E M M

C L L T L L L L

L

K u F V u F V F V + +
  ,(17a) 

( )2

E M M E

T L L L L

L

B Ku F A F A= + ,        (17b) 
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where the coefficients uC, u||, uC||, uT, ,Cu Tu  

are called the kinematic coefficients, they 

appeared when computing the lepton tensors 

L , 
1L , and have the form:  

2

2
2

C

Q
u  = +  = 2’(1 - x2), 

2

|| || ||2
2

Q
u k k= −   =  

2
2

2
2 (1 )x

q


 − , 

2

|| || ||2( ) 4 (1 )Cu k k x
q


    = − + = − − ,

2
2 2 2 2 2

2

2
( 2 )

2
T t

Q
u k x x

q
     = − = + +

2

|| ||

2
( )Tu k k x

q
        = − = − + ,  

2 3 3
4 4

|| ||2 4

32
(1 )C C Cu u u u x x

q q q

   
= + + = − , (18) 

where the coefficient Cu  is present due to the 

application of (11). 

In order to obtain the expression for RF 

we use (4a), and get 4F FR X H

= , after 

that by using the computation (15) or the 

computed results (17), where we must 

substitute Z FJ J → , then   

RF  =  4A 

2 || 2 ||

|| ||

2 2

( ) ( )

( ) ( )

C C

C L L C L L

E M
L T L L

u F u F u F V
A K

u F F

 + + 
=  

 + +   
                                      

 2 2 2( ) ( ) ( )C E M

C L T L L

L

K u F u F F = + +  . (19) 

This expression coincides with the results of 

[1], but the ways of computing are different [7, 

8]. 

The expressions (19), (16) and (17) 

computing RF and RFZ achieve the expansion of 

the scattering cross section into the quadric 

forms of the multipole form factors. Each 

multipole form factor is a transition amplitude 

of the transition current component with 

definite angular momentum Lm, where the 

form factor in fact depends only on L, not on 

m. In principle the sums in above formulas are 

infinite, but the selection rules derived from the 

symmetries limit the quantity of remaining 

terms, which becomes not only finite but also 

rather few. 

IV. MULTIPOLE FORM FACTORS 

The multipole form factors of the 

nucleus are computed on the basis of some 

model on the nuclear structure. By putting the 

obtained form factors into the scattering cross 

section formula, the comparison with 

experiments will give us a verification of the 

model. Up to present, there have been many 

such verifications, but the verifications at high 

energies in fact are few.  

In the following we present an example 

on the computation of the form factors, related 

to the nucleus 
6

3 ,Li  and the scattering is 

supposed to be elastic. This nucleus has spin J 

= 1, so L = 0, 1, 2. The selection rules allow the 

existence of 8 following multipole form 

factors: 0

CF , 2

CF , 1

MF , 0

CV , 2

CV , 1

MV , 
||

1A , 

1 .EA  Since the scattering is elastic so J' = J, we 

have K = 4. The contraction products in the 

cross section become 

( ) ( ) ( )
2 2 2

0 2 1/4 C C M

C TA u F F u F  = + +
  

, 

( )1 0 0 2 2 1 1/4 C C C C M M

C TB u F V F V u F V = + + ,          

2 1 1/4 M E

TB u F A = .                                (20) 

We see that 
||

1A  does not contribute to the 

scattering cross section. 
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On the other hand, the nucleus 
6

3Li  has 

Z = N, so the isospin projection mT = 0, which 

leads to 10 10 0V A = = , because these terms are 

proportional to mT. Therefore we get  

            00 ,FJ V =   

(0) (0)

00V V FV V J   = = ,              (21) 

i.e. the weak current is proportional to the 

electromagnetic current, this is a common 

characteristic of the nuclei having Z = N. 

Furthermore in the Weinberg-Salam model we 

have 
(0)

A = 0, so the nuclei with Z = N do not 

have the axial current A. This is a doubtful 

issue, there are evidences that 
(0)

A  0 and the 

above mentioned data become not true. We 

hope to talk about this topic in a report in the 

future. 

Willey [9] was the first to present the 

way of computing the multipole form factors 

using the many-particle theory. The author 

started from the expression of current density 

which is the sum of the currents created by 

each nucleon, and averaged the interactions 

between them. After that he computed the sum 

by considering the distribution of nucleons in 

the nucleus according to the shell model. The 

influence of individual nucleons on observable 

quantities is taken into account by introducing 

additional parameters related to its charge and 

magnetic moment as follows: 

3 3

1 1
(1 ) (1 )

2 2
a a p a n    = + + − , 

3 3

1 1
(1 ) (1 )

2 2
a a p a n    = + + − . 

At low energies we have p = 1, n = 0, p 

= 2,79, n = -1,91. At high energies, we adjust 

the expression by substituting the form factors 

of the nucleon for above quantities: p → GEp, 

n → GEn, p → GMp, n → GMn, i.e.   

          

3 3

1 1ˆ (1 ) (1 )
2 2

a a a Ep a EnX G G  →  + + − ,          

3 3

1 1ˆ (1 ) (1 ) .
2 2

a a a Mp a MnY G G  →  + + −  

The nucleon form factors which were fitted in 

experiments are [10] 

( )
2

2 2

1

1 /
Ep D

V

G G
Q m

= 
−

,   

GEn  =  - 1,91GD/(1 + 5,6),    =  - Q2/4
2

Nm , 

GMp  =  2,79GD,  GMn  =  - 1,91GD,  

2

Vm  = 0,71 GeV2,  mN: nucleon mass.          (22) 

The next step is to compute the 

multipole form factors according to such a 

distribution, we obtain the following  

1

( ) ( ),
A

C

aLm a L a LM

a

F e j qr Y
=

=  r     

  1

1

( 1) ( ) ( ) ( )
A

E

aLm a L a a L a Lm

a

F e L j qr qr j qr Y
q


 +

=

= − + + r

                                        

( 1) ( ) ( ).
2 Lm

L

aa L a a

q
L L j qr

M
+ + Y r σ      

1

1

1
1

1

( ) ( )
.

1 1 ( ) ( )

Lm

Lm

L
A

aL aM

Lm a a
L

a aL a

L j qreq
F

M L L j qr


−

−

+
=

+

  


 = 
 + + +  


Y r

l
Y r

               

1

1

1

1

1 ( ) ( )( 1)
. .

2 ( ) ( )

Lm

Lm

L

aL a

a aL

aL a

L j qrL L

L j qr


−

−

+

+

 ++ + 
 −  

Y r
σ

Y r

(23) 

By computing the transition matrix 

element and using the Wigner-Eckart rule of 

reduction, we get                

( )
2

0 0 2

1
2

8

C

T T T

q
F J X X Y

M
= + − 

, 
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2 0CF = , 

1 0

2

3

M

T

q
F J Y

M
= ,                              (24) 

( )0

2
1

3

XJ X e− − ,  X  q2/4 = 26,58q2, 

( )/2S

T EN Ep EnX G G G=  + ,  

( )/2S

T MN Mp MnY G G G=  + . 

The weak form factors in this case are 

proportional to the electromagnetic form 

factors, as mentioned above, so there is no 

need to write them down. 

V. CONCLUSION 

We performed the multipole expansion 

for the transition currents in the nucleus into 

the multipole form factors and expressed the 

cross section in terms of them. These factors 

are the reduced matrix elements of the 

multipole components which appear when 

expanding the transition currents. The 

multipole form factors are the simplest 

components of the transition currents, which 

can be computed directly from the nuclear 

structure models. Therefore the method of 

multipole expansion allows us to obtain the 

more detailed information about nuclear 

structure, first of all the information which 

manifests only in the high energy processes. It 

also opens new perspectives in checking the 

unified electroweak interaction model. The 

computation of the multipole form factors for 

nuclei as well as the evaluation of the 

parameters of the electroweak theory will 

become an extensive area of the nuclear 

structure theory. 
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