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Abstract: This paper presents the application of an evolutionary simulated annealing (ESA) method 

to design a small 200 MWt reactor core. The core design is based on a reference ACPR50 reactor 

deployed in a floating nuclear power plant. The core consists of 37 typical 17x17 PWR fuel 

assemblies with three different U-235 enrichments of 4.45, 3.40 and 2.35 wt%. Core loading pattern 

(LP) has been optimized for obtaining the cycle length of 900 effective full power days, while 

minimizing the average U-235 enrichment and the radial power peaking factor. The optimization 

process was performed by coupling the ESA method with the COREBN module of the SRAC2006 

system code.  
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I. INTRODUCTION 

In recent years, interest in small module 

reactors (SMR) has been increasing due to 

their flexibility in power generation for wider 

ranger users, locations and applications. They 

also show an enhanced safety performance 

through passive safety systems and updated 

technologies [1]. Currently there are more than 

50 designs of SMR under development in the 

world [2]. Because of flexibility and safety 

features of SMRs, researches in this 

technology are very necessary to energy 

development strategy in Viet Nam. One of the 

first tasks of the research in SMRs is reactor 

core design and its loading pattern. 

Fuel loading optimization is one of the 

important tasks in designing a nuclear reactor 

core, which is performed after every cycle of 

a nuclear reactor. The problem of fuel 

loading pattern (LP) optimization has 

received attention from the beginning of 

nuclear reactor technology with the 

application of various optimization methods. 

Most of the methods are based on the 

simulation of natural systems such as 

simulated annealing (SA) 0-0, generic 

algorithms (GA) 0, 0, 0, 0, evolution method 

0, particle swarm optimization method (PSO) 

0, 0, 0, differential evolution 0 and so on. 

Although many attempts have been done, it 

is still a complicated multi-objective task 0.  

In the present work, an evolutionary 

simulated annealing (ESA) method has been 

applied to design a small 200 MWt reactor 

core. The ESA method is developed to improve 

the original SA by using crossover and 

mutation operators to generate new trial 

solutions, instead of binary or ternary 

exchanges in the original SA 0. The crossover 
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and mutation operators are similar to that used 

in GA. The reactor core is designed based on a 

reference ACPR50S reactor deployed in a 

floating nuclear power plant (FNPP) using 

typical PWR fuel assemblies [2], 0, 0. The core 

design is targeted to attain a cycle length of 

about 900 effective full power days (EFPDs) 

similar to the reference ACPR50S, while 

minimizing the U-235 enrichment and radial 

power peaking factor. Core physics 

calculations were performed using the 

COREBN module of the SRAC2006 code 

system. The ESA method has been coupled 

with the COREBN module to perform the 

optimization process.  

II. METHODOLOGY 

A. ESA method 

Simulated annealing (SA) method has 

been soon applied to the problem of fuel LP 

optimization 0. The SA method has ability to 

escape local optima due to an acceptance 

probability of a worse solution. However, due 

to a slow convergence, the number of 

calculated LPs is usually large. In a previous 

work, the ESA method was developed to 

improve the original SA by using crossover 

and mutation to generate trial solutions. The 

advantages of ESA over SA and ASA have 

been examined 0. The procedure of ESA is 

described as follows: 

(1)  Starting with an initial trial LP. 
 

(2)  Core physics calculation of the trial 

LP is performed, and the fitness 

function is evaluated. 
 

(3)  Comparison of the fitness function with 

that of the current base LPs is performed. 

The base LPs are updated if: 
 

• The fitness value of the trial LP is greater 

than or equal to that of the base LP. 
 

• The fitness value of the trial LP is less 

than that of the base LP, the base LP is 

updated by an acceptance probability: 

𝜌 = exp(−
𝛿𝐶

𝑇(𝑛)
). Where, 𝛿𝐶 is the 

difference of the fitness between the 

base LP and the trial LP; T is the 

temperature of the search. 
 

(4) A new trial LP is generated from two base 

LPs using crossover and mutation operators. 
 

(5) The temperature T(n) is decreased as T(n+1) 

= αT(n), α < 1, after a number of calculated 

trial LPs with constant T, known as 

Malkov length. 
 

(6) The convergence criteria is checked, and the 

search is stopped if the convergence criteria 

are met. Otherwise, step (2) is repeated. 

In the ESA method, the two base LPs are 

referred to as parents, and the new trial LP is 

an offspring. The crossover is executed by 

exchanging two assemblies between the 

parents as displayed in Fig. 1. Then, a new trial 

LP is generated from the offspring by applying 

the mutation with a probability of 0.5. The 

crossover is performed as follows: 

i) In the father LP, two locations L1 and 

L2 are randomly selected, and the 

corresponding assemblies at the locations L1 

and L2 are identified as F1 and F2. 

ii) A temporary offspring is generated by 

copying the mother.  

iii) The assemblies F1 and F2 are located 

at the locations L1 and L2 of the offspring. At 

the same time, the assemblies at the locations 

L1 and L2 of the offspring are moved to the 

locations L3 and L4, where the assemblies F1 

and F2 are formerly located. 

The mutation is performed in two steps. 

First, two or three assemblies of the offspring 

are selected and exchanged randomly to 
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generate a new trial LP. Second, an assembly 

of the offspring is selected randomly and 

replaced by a random assembly with different 

U-235 enrichment by a probability of 0.5.  

 

Fig. 1. Crossover operator used in the ESA method 

The two base LPs are updated by 

replacing the worse base LP by a better trial. 

Therefore, the best current LP is always 

selected as one of the two base LPs. Since 

the offspring contains more characteristics of 

the mother than that of the father, the 

selection of the mother from the two base 

LPs would have a significant effect on the 

performance of the crossover. Thus, to 

increase the diversity of the search process, 

the worse base LP is chosen as the mother. 

The convergence criteria were set to stop the 

calculation loop if the current base LP is 

remained unchanged after 100 trial solutions 

or the current best LP is remained unchanged 

after 1000 trial solutions.  

B. Objective function 

A fitness function has been used to 

design the core for achieving a cycle length of 

about 900 EFPDs, which is similar to the cycle 

length of the reference ACPR50 reactor. The 

average U-235 enrichment and radial power 

peaking factor are minimized. Therefore, the 

fitness function is written as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = −𝑤𝑐 × |𝐶 − 𝐶0| − 𝑤𝑒 × 𝐸

− 𝑤𝑝 ×𝑚𝑎𝑥(0, 𝑃𝑃𝐹

− 𝑃0) 
(1) 

𝐸 =
∑𝐸𝑖𝑛𝑖
∑𝑛𝑖

 
(2) 

Where, C is cycle length; E is the 

average enrichment of loaded assemblies, Ei is 

enrichment of fuel assembly type i and ni is the 

number of loaded fuel assembly type i; and 

PPF is the radial power peaking factor. C0 = 

900 effective full power days (EFPDs), P0 = 

1.5 are chosen as constants. wc = 0.00333, we = 

0.1 and wp = 10 are weighting factors. The 

cycle length is determined when the keff 

decreases to unity. A better LP corresponds to 

a larger value of Fitness.  

 
Fig. 2. Core configuration (a) and a typical 17x17 PWR fuel assembly (b) 
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C. Description of the core 

The core is designed based on typical 

PWR assembles similar to the reference 

ACPR50 core as shown in Fig. 2. The core 

consists of 37 fuel assemblies with 1/4th 

symmetrical geometry. The assemblies are 

typical types of PWR, with 17x17 lattice, 

containing 264 rods, 24 guide tubes and a 

instrumentation tube. Three types of fuel 

assemblies corresponding to the U-235 

enrichments of 4.45, 3.40 and 2.35 wt%, 

respectively, are considered for loading into 

the core. The main design parameters of the 

core are given in Table 0, 0, 0.  

Core physics and burnup calculations 

have been performed based on a 2D full-core 

model using the COREBN module of the 

SRAC2006 code system and the JENDL-3.3 

data library. The core is reflected by water as 

shown in Fig. 2. The eight-group 

macroscopic cross-section set of reflector 

and fuel lattices were generated using the PIJ 

module of the SRAC2006 code. The 

COREBN calculations were performed for 

obtaining the effective multiplication factor 

(keff) and power distribution during the 

burnup. Then the cycle length (C) and the 

maximum PPF are determined.  

Table I. Main parameters of the small modular reactor core based on the reference ACPR50 reactor [2], 0 

Parameters Values 

Reactor thermal power [MW] 200 

Cycle length [day] 900 

Number of assembly [-] 37 

Assembly pitch [cm] 21.4173 

Assembly height [cm] 220 

Fuel rod pitch 1.2598 

Fuel pellet radius [cm] 0.4096 

Fuel inner cladding radius [cm] 0.4178 

Fuel outer cladding radius [cm] 0.475 

Fuel enrichment [%wt U235] 4.45, 3.40, 2.35 

Operation pressure [MPa] 15.5 

Inlet coolant temperature [K] 572.6 

Outlet coolant temperature [K] 595.1 

Fuel temperature [K] 1145 

 

III. RESULTS AND DISCUSSION 

A. Core design and optimization 

In the optimization process using the 

ESA method, the control parameters have to be 

chosen firstly. A survey has been conducted to 

determine the values of α and Malkov length. 

In this survey, the values of α and Malkov 

length were varied in the ranges of [0.85, 0.95] 

and [20, 50] with steps of 0.5 and 5, 

respectively. The values of α = 0.9 and Malkov 

length = 25 have been selected to maximize the 

fitness function whereas the number of 

searching LP in each run is lower than 2000.  
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Fig. 3. Evolution of the fitness (a), cycle length (b), PPF (c) and average enrichment with the number of 

calculated LPs in ten independent runs 

Table II. Optimal objective parameters obtained by ESA method in ten independent runs 

run   Fitness  
 Cycle length  

(EFPDs)  
 PPF  

 Enrich-ment  

(wt%)     

1 -0.35127 900.2 1.377 3.505 

2 -0.35127 900.2 1.377 3.505 

3 -0.35268 899.3 1.370 3.505 

4 -0.35127 900.2 1.377 3.505 

5 -0.35515 898.6 1.497 3.505 

6 -0.35127 900.2 1.377 3.505 

7 -0.35128 900.2 1.377 3.505 

8 -0.35128 900.2 1.377 3.505 

9 -0.35268 899.3 1.370 3.505 

10 -0.35127 900.2 1.377 3.505 

Average  -0.35194 899.9 1.387 3.505 
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The initial temperature T were selected 

as 15.0 to ensure the initial acceptance 

probability approximate unity. Due to the 1/4 

symmetry of the core, the calculation model 

consists of 10 fuel assemblies with three types 

of U-235 enrichments of 4.45 %wt (F445), 3.40 

%wt (F340) and 2.35 %wt (F235), respectively, 

loaded in the 1/4th core geometry. The search 

processes were performed with ten independent 

runs 0, 0, 0, 0.  

Fig. 3 shows the change of the fitness 

function and other objective parameters in ten 

independent runs. Once can see the 

improvement of the Fitness occurs throughout 

the search process. The objective parameters 

such as cycle length, PPF and average 

enrichment are also converged to stable values 

together with the convergence of Fitness 

function. Table  summaries the optimal 

objective parameters obtained in ten 

independent runs. The PPFs are converged to 

the values of about 1.387, while the average 

enrichment is 3.505 wt%, and the cycle length 

is approximate 900 EFPDs. 

B. Optimal core LP 

Fig. 4 shows the optimal core LP of the 

small 200 MWt reactor selected from the ten 

independent runs of the optimization process. 

The relative radial power distribution at the 

beginning of cycle shows that the PPF of 

1.377 appear near the core central at the 

assembly with the enrichment of 3.40 wt%. 

Fig. 5 shows the change of keff and PPF 

during the burnup. The PPF is decreased 

during the EFPDs, and the keff is unity at 

about 900 days. 

Several main parameters of the optimal 

LP have been calculated and summarized in 

Table . One can see that two parameters of the 

core included PPF and EFPDs satisfy the 

requirements of the ACPR50S reactor those are 

PPF < 1.377 and EFPDs = 900 days. The 

temperature coefficients of moderator and fuel 

are negative also. Furthermore, the average 

enrichment of the ACPR50S core is estimated 

at 3.505 wt%. The number of loaded fuel types 

are nine assemblies of F235, 12 assemblies of 

F340 and 16 assemblies of F445.  

 

Fig. 4. Optimal loading pattern and relative power distribution of the small reactor core 
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Fig. 5. Evolution of the keff and PPF of the optimal core as functions of burnup 

Table III. Parameters of the optimal core 

Parameters  Values    

Cycle length (days)  900 

Average enrichment [wt% U-235]  3.505 

Maximum PPF [-]  1.377 

Maximum keff  1.22417 

Fuel temperature coefficient [pcm/K]  -2.564 

Moderator temperature coefficient [pcm/K]  -104.3 

Number of fuel assembly F235  9 

Number of fuel assembly F340  12 

Number of fuel assembly F445  16 
 

IV. CONCLUSIONS 

The ESA method was applied to design 

a small 200 MWt modular reactor core based 

on the reference ACPR50S reactor. The 

COREBN module of the SRAC2006 code 

system was for core physics and burnup 

calculations, which was coupled with the ESA 

method for performing the design process. 

The core consists of 37 typical PWR fuel 

assemblies with the enrichments of 4.45, 3.40 

and 2.35 wt%. The target designs are to obtain 

the core cycle length of about 900 EFPDs, 

while minimizing the PPF and the average U-

235 enrichment. The optimal core is obtained 

with the number of F445, F340 and F235 

assemblies of 16, 12 and 9, respectively. The 

cycle length of the optimal core is 900 EFPDs, 

while the PPF is 1.377 and the average 

enrichment is 3.505 wt%. Negative fuel 

temperature and coolant temperature 

coefficients have been confirmed.  
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